On-line Suppl. Tab. 1. Schedule of sampling physico-chemical data, bacteria and diatoms in Lake Mrtvo More in 2016. T – temperature, S – salinity, NO_3^- – nitrate, NO_2^- – nitrite, NH_4^+ – ammonium, TIN – total inorganic nitrogen, $PO_4^{3^-}$ – phosphate, $SiO_4^{4^-}$ – silicate, Chl *a* – chlorophyll *a* concentrations, O_2/O_2' – oxygen saturation.

Season	Month	Date				Phys	ico-che	nical p	aramet	er			Bacteria samples	Diatom samples
Se	М	-	Т	S	NO_3^-	NO_2^-	$NH_4{}^+$	TIN	PO4 ³⁻	SiO44-	Chl a	O ₂ /O ₂ '		
	April	19-Apr-2016	1	1	1	1	1	1	1	1	1	1		
-	AF	26-Apr-2016	1	1	1	1	1	1	1	1	1	1		•
مع		4-May-2016	1	1	1	1	1	1	1	1	1	1		
Spring		10-May-2016	1	1	1	1	1	1	1	1	1	1	1	1
S May	May	20-May-2016	1	1	1	1	1	1	1	1	1	1		1
		25-May-2016	1	1	1	1	1	1	1	1	1	1		1
		31-May-2016	1	1	1	1	1	1	1	1	1	1	•	1
		7-Jun-2016	1	1	1	1	1	1	1	1	1	1	1	1
	June	18-Jun-2016	1	1	1	1	1	1	1	1	1	1	1	1
	Ŋ	24-Jun-2016	1	1	1	1	1	1	1	1	1	1	1	1
		29-Jun-2016	1	1	1	1	1	1	1	1	1	1	1	1
er		7-Jul-2016	1	1	1	1	1	1	1	1	1	1		1
Summer	July	13-Jul-2016	1	1	1	1	1	1	1	1	1	1	1	1
Sı	Jn	20-Jul-2016	1	1	1	1	1	1	1	1		1	1	1
		28-Jul-2016	1	1	1	1	1	1	1	1	1	1	1	1
	st	11-Aug-2016	1	1	1	1	1	1	1	1	1	1	1	1
	August	17-Aug-2016	1	1	1	1	1	1	1	1	1	1	•	1
	A	24-Aug-2016	1	1	1	1	1	1	1	1	1	1	1	1
		2-Sep-2016	1	1	1	1	1	1	1	1	1	1	1	1
	ber	6-Sep-2016	1	1	1	1	1	1	1	1	1	1	1	1
ų	September	14-Sep-2016	1	1	1	1	1	1	1	1	1	1		1
Autumn	Sep	21-Sep-2016	1	1	1	1	1	1	1	1	1	1		1
Ą		27-Sep-2016	1	1	1	1	1	1	1	1	1	1		
-	October	3-Oct-2016	1	1	1	1	1	1	1	1	1	1		1
	Octo	12-Oct-2016	1	1	1	1	1	1	1	1	1	1		1
Number o	f samples:		25	25	25	25	25	25	25	25	24	25	12	21

On-line Suppl. Tab. 2. Results of ANOSIM test performed on physico-chemical data. Physico-chemical parameters varied significantly (ANOSIM, P < 0.05) among: seasons (spring, summer, autumn), months (April-October), between the significantly different clusters of samples for analysis physico-chemical parameters collected before the 18th June (Group 1) and afterwards (Group 2, and Group 3 containing only sample from 12th October), and between the significantly different clusters of diatom assemblages. Av.Abund. – average abundance.

	Season	Month	Environmental Simprof Groups 1 & 2 & 3	Av. Abund. Simprof Groups 1 & 2 & 3	Av. Abund. Simprof Subgroups 1A & 1B & 2A & 2B & 3
Р	0.001	0.001	0.001	0.001	> 0.05
Global R	0.545	0.466	0.891	0.386	0.381

On-line Suppl. Tab. 3. Results of ANOSIM test performed on diatom species (S) and growth form (GF) relative abundance data. Diatom assemblages differed significantly (ANOSIM, P < 0.05) among months, between the significantly different clusters of diatom samples collected up to the middle of July (Group 1) and afterwards (Group 2, and Group 3 containing only sample from 12th October), and between the significantly different sub-clusters of diatom samples.

	Sea	son	Мо	nth	1	Groups 2 & 3	Simprof Subgroups 1A & 1B & 2A & 2B & 3				
-	S	GF	S	GF	S	GF	S	GF			
Р	> 0.05	> 0.05	0.001	0.001	0.001	0.001	0.001	0.001			
Global R	0.268	0.274	0.650	0.591	0.903	0.668	0.968	0.774			

On-line Suppl. Tab. 4. List of diatoms taxa and their percentage contribution to total diatom community composition (taxa with relative abundances \geq 3.5%, RA, are only shown) on artificial substrat (glass) in Lake Mrtvo More in 2016. TRIX index was computed in order to identify the trophic level of the research area. Groups and sub-groups were established upon the CLUSTER analysis with similarity profiles (SIMPROF) performed to determine significant levels of similarity between diatom samples. Only relative abundances > 25% are framed with black rectangle.

framed with black rectangle.		-			-																	
TRIX				Oligotrophic					Mesotrophic		Extreme Eutrophic	T	эшдолла	Mesotrophic	Distancialies	Europnic	Extreme Eutrophic	Eutrophic		Mesotropnic	Oligotrophic	
Group					1	l						2										
Subgroup				1.	A				1	В					2A					2B		
Month		М	ay			Ju	ne			Ju	ly		A	ugus	st	9	Septe	mbe	r	Oct	ober	
Taxa / Date	10-May	20-May	25-May	31-May	07-Jun	18-Jun	24-Jun	29-Jun	07-Jul	13-Jul	20-Jul	28-Jul	11-Aug	17-Aug	24-Aug	02-Sep	06-Sep	14-Sep	21-Sep	03-Oct	12-Oct	
Achnanthes kuwaitensis															11.14		8.75					
Amphora sp.	10.00								3.50													
Cocconeis costata	6.75			3.50							7.25			6.00	4.73	8.50	10.00	6.25	6.75	4.09		
Cocconeis dirupta var. flexella	22.50	14.75	20.75	19.75	5.50	29.85	51.00	37.25	65.00	28.89	47.00	27.50	24.00	15.50	11.88	23.75	15.50	10.00	8.25	6.27		
Cocconeis dirupta																					4.02	
Cocconeis pseudomarginata																			3.75		7.47	
Cocconeis scutellum var. scutellum	53.25	73.00	73.00	70.75	89.25	47.26	39.00	55.50	7.25	17.09	14.75	10.00	4.25	7.00		6.00	9.75			4.09		
Cocconeis woodii											4.50											

On-line Suppl. Tab. 4. Continued

TRIX	Oligotrophic								Mesotrophic		Extreme Eutrophic			Mesotrophic Futronhic		Eutrophic Extreme Eutrophic		Eutrophic	-	Mesotrophic	Oligotrophic
Group						1					2										3
Subgroup				1	А				1	В					2A					2B	
Month		М	ay			Ju	ne			Ju	ly		A	lugus	st		Septe	mbe	r	Oct	ober
Diploneis crabro																	6.50				
Fragilaria sp.2																		13.75	6.50		
Halamphora coffeiformis		3.50											3.75		7.93	13.50		3.75			
Halamphora hyalina													9.50	11.25	14.36		6.50				
Halamphora subangularis																		3.50		5.72	
Licmophora flabellata									13.50	8.29						3.75				12.26	
Licmophora paradoxa																7.50	3.75		3.50	16.89	43.67
Mastogloia cuneata						5.47															
Navicula directa												3.75									
Navicula flagellifera											4.50								6.00		
Navicula salinicola	3.50												5.25	13.25	6.94			10.00	13.25	3.81	
Navicula sp.1															7.67						
Nitzschia compressa var. compressa																					4.02
Nitzschia frustulum										5.03											

On-line Suppl. Tab. 4. Continued

Continue Suppl. 1ab. 4. Continued																					
TRIX	Oligotrophic										Extreme Eutrophic	П	Europnic	Mesotrophic		Eutrophic Extrant Entrophic		Eutrophic		мезопорпис	Oligotrophic
Group						1									2	2					3
Subgroup				1	A				1	В					2A					2B	
Month		М	ay			Ju	ne			Ju	ly		A	ugus	st		Septe	mbe	r	Oct	ober
Nitzschia laevis														5.25							
Nitzschia sp.2						3.73															
Opephora mutabilis													4.00	4.00	7.67	6.00	10.00	6.25	5.50	22.34	
Pinnularia quadratarea var. cuneata																			5.00		
Pinnularia sp.																			6.50		
Placoneis flabellate																		3.50			
Psammodictyon rudum										8.29			6.25								
Rhabdonema adriaticum													5.50	7.00							
Seminavis sp.																			3.75		
Striatella unipunctata																				5.18	
Trachyneis aspera																					19.00
Tryblionella coarctata														5.50	4.28						

On-line Suppl. Fig. 1. A – Lake Mrtvo More on 7th July 2016, red dot indicates the sampling site position, B – plate with microscopic slides submerged in Lake Mrtvo More at the depth of 1 m on 19th of April 2016, C-E – hauling up the plate with microscopic slides so one glass could be removed for diatom analyses (C, D – 7th June 2016, E – 14th September 2016).

On-line Suppl. Fig. 2. The average monthly precipitation (mm) in Dubrovnik for the period 1961-2017 and during 2016 (data for Dubrovnik meteorological station, Croatian Meteorological and Hydrological Service).

On-line Suppl. Fig. 3. Cluster analysis (A) and non-metric multidimensional scaling (NMDS) ordination (B) based on the data of physicochemical parameters (temperature, salinity, TIN, PO_4^{3-} , SiO_4^{4-} , chlorophyll *a* concentrations, oxygen saturation, NO_3^{-} , NO_2^{-} , NH_4^{+}) in 25 sampling dates (Lake Mrtvo More, the island of Lokrum, April-October 2016). Euclidean distance as a similarity measure was used. N = 25.