Main Article Content
Abstract
This paper is aimed at investigating leaf morphological variability and possible hybridization between two species within the Rosaceae family: the one-seed hawthorn (Crataegus monogyna Jacq.) and the almond-leaved pear (Pyrus spinosa Forssk.). These two genera are taxonomically related and meet many prerequisites for successful hybridization between them, which prompted us to investigate the possibility of the presence of a long-described yet uninvestigated hybrid called ×Pyrocrataegus. The research was conducted along the Eastern Adriatic coast, where both species are widespread and often grow together in open woodlands, forest edges and abandoned agricultural areas. The examination of morphological variability was based on a morphometric analysis of seven populations using ten phenotypic traits of leaves. In general, our results showed great variability of leaf morphological traits within and between the studied populations, as well as a clear differentiation between the two species. The results of principal component analysis (PCA) showed a few intermediate individuals between the two species, indicating possible hybridization. However, as heteroblasty is present in P. spinosa, with its seedlings reported to have lobed, hawthorn-like leaves, dimorphism could also result from the reappearance of juvenile leaves on adult trees by means of rejuvenation. In order to draw a definitive conclusion about the existence of hybrid individuals in the next study, DNA markers and a much larger sample, especially morphologically intermediate individuals per population should be included.
Keywords
Article Details
Copyright (c) 2025 Antonio Vidaković, Zlatko Šatović, Zlatko Liber, Marko Jurica, Igor Poljak

This work is licensed under a Creative Commons Attribution 4.0 International License.
Acta Botanica Croatica is an Open Access journal with minimal restrictions regarding content reuse. Immediately after publishing, all content becomes freely available to anyone for unlimited use and distribution, under the sole condition that the author(s) and the original source are properly attributed according to the Creative Commons Attribution 4.0 International License (CC BY 4.0).
CC BY 4.0 represents the highest level of Open Access, which maximizes dissemination of scholarly work and protects the rights of its authors. In Acta Botanica Croatica, authors hold the copyright of their work and retain unrestricted publishing rights.
By approving final Proof the authors grant to the publisher exclusive license to publish their article in print and on-line, in accordance with the Creative Commons Attribution (CC-BY-4.0) license.
References
- Bell, R. L., Hough, L. F., 1986: Interspecific and intergeneric hybridization of Pyrus. HortScience 21(1), 62–64. https://doi.org/10.21273/HORTSCI.21.1.62
- Campbell, C. S., Evans, R. C., Morgan, D. R., Dickinson, T. A., Arsenault, M. P., 2007: Phylogeny of subtribe Pyrinae (for-merly the Maloideae, Rosaceae): Limited resolution of a complex evolutionary history. Plant Systematics and Evolu-tion 266(1/2), 119–145. https://doi.org/10.1007/s00606-007-0545-y
- Chen, Y.-T., Shen, C.-H., Lin, W.-D., Chu, H.-A., Huang, B.-L., Kuo, C.-I., Yeh, K.-W., Huang, L.-C., Chang, I.-F., 2013: Small RNAs of Sequoia sempervirens during rejuvenation and phase change. Plant Biology 15(1), 27–36. https://doi.org/10.1111/j.1438-8677.2012.00622.x
- Considine, M. J., Wan, Y., D’Antuono, M. F., Zhou, Q., Han, M., Gao, H., Wang, M., 2012: Molecular genetic features of polyploidization and aneuploidization reveal unique patterns for genome duplication in diploid Malus. PloS One 7(1), e29449. https://doi.org/10.1371/journal.pone.0029449
- del Tredici, P., 2001: Sprouting in temperate trees: A morphological and ecological review. The Botanical Review 67(2), 121–140. https://doi.org/10.1007/BF02858075
- del Tredici, P., 2017: Aging and rejuvenation in trees. Arboricultural Consultant 50(1), 7–11.
- Dostálek, J., 1980: Pyrus spinosa und ihre Hybriden in Südwestbulgarien. Folia Geobotanica et Phytotaxonomica 15, 59–73. https://doi.org/10.1007/BF02853139
- Evans, R. C., Campbell, C. S., 2002: The origin of the apple subfamily (Maloideae; Rosaceae) is clarified by DNA sequence data from duplicated GBSSI genes. American Journal of Botany 89(9), 1478–1484. https://doi.org/10.3732/ajb.89.9.1478
- Excoffier, L., Lischer, H. E. L., 2010: Arlequin suite ver. 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Molecular Ecology Resources 10(3), 564–567. https://doi.org/10.1111/j.1755-0998.2010.02847.x
- Excoffier, L., Smouse, P. E., Quattro, J. M., 1992: Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitocondrial DNA restriction sites. Genetics 131(2), 479–491. https://doi.org/10.1093/genetics/131.2.479
- Fichtner, A., Wissemann, V., 2021: Biological flora of the British Isles: Crataegus monogyna. Journal of Ecology, 109(1), 541–571. https://doi.org/10.1111/1365-2745.13554
- Fischer, T. C., Malnoy, M., Hofmann, T., Schwab, W., Palmieri, L., Wehrens, R., Schuch, L. A., Müller, M., Schimmelpfeng, H., Velasco, R., Martens, S., 2014: F1 hybrid of cultivated apple (Malus × domestica) and European pear (Pyrus com-munis) with fertile F2 offspring. Molecular Breeding 34, 817–828. https://doi.org/10.1007/s11032-014-0077-4
- Idžojtić, M., 2009: Dendrologija – list (Dendrology - leaf). University of Zagreb, Faculty of Forestry and Wood Technology, Zagreb.
- Khadivi, A., Heidari, P., Rezaei, M., Safari-Khuzani, A., Sahebi, M., 2019: Morphological variabilities of Crataegus monog-yna and C. pentagyna in northeastern areas of Iran. Industrial Crops and Products 139, 111521. https://doi.org/10.1016/j.indcrop.2019.111531
- Khadivi-Khub, A., Karimi, S., Kameli, M., 2015: Morphological diversity of naturally grown Crataegus monogyna (Rosaceae, Maloideae) in Central Iran. Brazilian Journal of Botany 38, 921–936. https://doi.org/10.1007/s40415-015-0187-1
- Korotkova, N., Parolly, G., Khachatryan, A., Ghulikyan, L., Sargsyan, H., Akopian, J., Borsch, T., Gruenstaeudl, M., 2018: Towards resolving the evolutionary history of Caucasian pears (Pyrus, Rosaceae) - Phylogenetic relationships, diver-gence times and leaf trait evolution. Journal of Sytematics and Evolution 56(1), 35–47. https://doi.org/10.1111/jse.12276
- Kumar, C., Singh, S. K., Pramanick, K. K., Verma, M. K., Srivastav, M., Singh, R., Bharadwaj, C., Naga, K. C., 2018: Morpho-logical and biochemical diversity among the Malus species including indigenous Himalayan wild apples. Scientia Hor-ticulturae 233, 204–219. https://doi.org/10.1016/j.scienta.2018.01.037
- Larsen, A. S., Jensen, M., Kler, E. D., 2008: Crossability between wild (Malus sylvestris) and cultivated (M. ? domestica) apples. Silvae Genetica 57(3), 127–130. https://doi.org/10.1515/sg-2008-0019
- Manuela, D., Xu, M., 2020: Juvenile leaves or adult leaves: Determinants for vegetative phase change in flowering plants. International Journal of Molecular Science 21(24), 9753. https://doi.org/10.3390/ijms21249753
- McNeill, J., Shaw, J. M. H., Wiersema, J. H., 2016: Proposal to preclude homonymy of generic names with names of inter-generic graft-hybrids (chimaeras). Taxon 65(5), 1198–1199. https://doi.org/10.12705/655.39
- Nabavi, S. F., Habtemariam, S., Ahmed, T., Sureda, A., Daglia, M., Sobarzo-Sánchez, E., Nabavi, S. M., 2015: Polyphenolic composition of Crataegus monogyna Jacq.: From chemistry to medical applications. Nutrients 7(9), 7708–7728. https://doi.org/10.3390/nu7095361
- Németh, C., Papp, N., Nosková, J., Höhn, M., 2020: Speciation by triparental hybridization in genus Sorbus (Rosaceae). Biologia Futura 71, 209–222. https://doi.org/10.1007/s42977-020-00003-x
- Pasqualetto, G., Palmieri, L., Martens, S., Bus, V. G. M., Chagné, D., Wiedow, C., Malnoy, M. A., Gardiner, S. E., 2022: Mo-lecular characterization of intergeneric hybrids between Malus and Pyrus. Horticulture Research 10(1), uhac239. https://doi.org/10.1093/hr/uhac239
- Phipps, J. B., 2016: Studies in Mespilus, Crataegus, and ×Crataemespilus (Rosaceae), i. differentiation of Mespilus and Crataegus, Expansion of ×Crataemespilus, with supplementary observations on differences between the Crataegus and Amelanchier clades. Phytotaxa 257(3), 201–229. https://doi.org/10.11646/phytotaxa.257.3.1
- Poljak, I., Šatović, Z., Vidaković, A., Tumpa, K., Idžojtić, M., 2024: Population variability of rosemary willow (Salix eleagnos Scop.) based on leaf morphometry: Evidence of small and large-leaf morphotypes. Šumarski List 148(5-6), 219–236. https://doi.org/10.31298/sl.148.5-6.1
- Postman, J. D., 2011: Intergeneric hybrids in Pyrinae (=Maloideae) subtribe of Pyreae in family Rosaceae at USDA gene-bank. Acta Horticulturae 918, 937–943. https://doi.org/10.17660/ActaHortic.2011.918.123
- R Core Team, 2016: R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vi-enna. https://www.R-project.org/. Retrieved June 15, 2024.
- Rehder, A., 1949: Biobliography of cultivated trees and shrubs, hardy in the cooler temperate regions of the northern hemisphere. The Arnold arboretum of Harvard University, Jamaica Plain, Massachusetts.
- Rieseberg, R. H., Carney, S. E., 1998: Tansely review No. 102 Plant hybridization. New Phytologist 140, 599–624.
- Schuck, D. J., 2008: Crataegus monogyna Jacq. In: Roloff, A., Weisgerber, H., Lang, U., Stimm, B. (eds.), Enzyklopädie der Holzgewdchse, 1–12. Wiley-VCH, Weinheim.
- Shimura, I., Ito, Y., Seike, K., 1983: Intergeneric hybrid between Japanese pear and quince. Journal of the Japanese Soci-ety for Horticultural Science 52(3), 243–249. https://doi.org/10.2503/jjshs.52.243
- Sokal, R. R., Rohlf, F. J., 2012: Biometry: The principles and practice of statistics in biological research. W.H. Freeman and Co., New York.
- Statistica (Data Analysis Software System), 2018: Statistica, ver. 13, TIBCO Software Inc., Palo Alto. http://www.statsoft.com.
- Sun, J., Zhao, D., Qiao, P., Wang, Y., Wu, P., Wang, K., Guo, L., Huang, L., Zhou, S., 2024: Phylogeny of genera in Maleae (Rosaceae) based on chloroplast genome analysis. Frontiers in Plants Science, 15. https://doi.org/10.3389/fpls.2024.1367645
- Van Tuyl, J. M., de Jeu, M. J., 1997: Methods for overcoming interspecific crossing barriers. In: Sawhney, V. K., Shivanna, K. R. (eds.), Pollen biotechnology for crop production and improvement, 273–292. Cambridge University Press, New York.
- Vidaković, A., Liber, Z., Šatović, Z., Idžojtić, M., Volenec, I., Zegnal, I., Pintar, V., Radunić, M., Poljak, I., 2021: Phenotypic diversity of almond-leaved pear (Pyrus spinosa Forssk.) along Eastern Adriatic coast. Forests 12, 1630. https:// doi.org/10.3390/f12121630
- Vidaković, A., Šatović, Z., Liber, Z., Radunić, M., Skendrović Babojelić, M., Poljak, I., 2024: Genetic diversity of Pyrus py-raster (L.) Burgsd. and P. spinosa Forssk.: evidence of introgression from cultivated into wild pear populations. Trees. https://doi.org/10.1007/s00468-024-02553-2
- Vidaković, A., Šatović, Z., Tumpa, K., Idžojtić, M., Liber, Z., Pintar, V., Radunić, M., Runjić, T. N., Runjić, M., Rošin, J., Gaunt, D., Poljak, I., 2022: Phenotypic variation in European wild pear (Pyrus pyraster (L.) Burgsd.) populations in the North-Western part of the Balkan Peninsula. Plants 11(3), 335. https://doi.org/10.3390/plants11030335
- WFO, 2024: World Flora Online. Retrieved June 15, 2024 from https://www.worldfloraonline.org/
- WinFoliaTM, 2001: WinFolia ver. PRO 2005b. Regent Instruments Inc., Quebec City.
- Ye, B.-B., Zhang, K., Wang, J.-W., 2019: The role of miR156 in rejuvenation in Arabidopsis thaliana. Journal of Integrative Plant Biology 62(5), 550–555. https://doi.org/10.1111/jipb.12855
- Zamani, A., Attar, F., Maroofi, H., 2012: A synopsis of the genus Pyrus (Rosaceae) in Iran. Nordic Journal of Botany 30(3), 310–332. https://doi.org/10.1111/j.1756-1051.2011.00989.x
- Zhang, S. D., Jin, J. J., Chen, S. Y., Chase, M. W., Soltis, D. E., Li, H. T., Yang, J. B., Li, D. Z., Yi, T. S., 2017: Diversification of Rosaceae since the Late Cretaceous based on plastid phylogenomics. New Phytologist 214(3), 1355–1367. https://doi.org/10.1111/nph.14461
- Zhang, Z., Sun, Y., Li, Y., 2020: Plant rejuvenation: from phenotypes to mechanisms. Plant Cell Reports 39(10), 1249–1262. https://doi.org/10.1007/s00299-020-02577-1
- Zotz, G., Wilhelm, K., Becker, A., 2011: Heteroblasty – A review. The Botanical Review 77, 109–151. https://doi.org/10.1007/s12229-010-9062-8
References
Bell, R. L., Hough, L. F., 1986: Interspecific and intergeneric hybridization of Pyrus. HortScience 21(1), 62–64. https://doi.org/10.21273/HORTSCI.21.1.62
Campbell, C. S., Evans, R. C., Morgan, D. R., Dickinson, T. A., Arsenault, M. P., 2007: Phylogeny of subtribe Pyrinae (for-merly the Maloideae, Rosaceae): Limited resolution of a complex evolutionary history. Plant Systematics and Evolu-tion 266(1/2), 119–145. https://doi.org/10.1007/s00606-007-0545-y
Chen, Y.-T., Shen, C.-H., Lin, W.-D., Chu, H.-A., Huang, B.-L., Kuo, C.-I., Yeh, K.-W., Huang, L.-C., Chang, I.-F., 2013: Small RNAs of Sequoia sempervirens during rejuvenation and phase change. Plant Biology 15(1), 27–36. https://doi.org/10.1111/j.1438-8677.2012.00622.x
Considine, M. J., Wan, Y., D’Antuono, M. F., Zhou, Q., Han, M., Gao, H., Wang, M., 2012: Molecular genetic features of polyploidization and aneuploidization reveal unique patterns for genome duplication in diploid Malus. PloS One 7(1), e29449. https://doi.org/10.1371/journal.pone.0029449
del Tredici, P., 2001: Sprouting in temperate trees: A morphological and ecological review. The Botanical Review 67(2), 121–140. https://doi.org/10.1007/BF02858075
del Tredici, P., 2017: Aging and rejuvenation in trees. Arboricultural Consultant 50(1), 7–11.
Dostálek, J., 1980: Pyrus spinosa und ihre Hybriden in Südwestbulgarien. Folia Geobotanica et Phytotaxonomica 15, 59–73. https://doi.org/10.1007/BF02853139
Evans, R. C., Campbell, C. S., 2002: The origin of the apple subfamily (Maloideae; Rosaceae) is clarified by DNA sequence data from duplicated GBSSI genes. American Journal of Botany 89(9), 1478–1484. https://doi.org/10.3732/ajb.89.9.1478
Excoffier, L., Lischer, H. E. L., 2010: Arlequin suite ver. 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Molecular Ecology Resources 10(3), 564–567. https://doi.org/10.1111/j.1755-0998.2010.02847.x
Excoffier, L., Smouse, P. E., Quattro, J. M., 1992: Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitocondrial DNA restriction sites. Genetics 131(2), 479–491. https://doi.org/10.1093/genetics/131.2.479
Fichtner, A., Wissemann, V., 2021: Biological flora of the British Isles: Crataegus monogyna. Journal of Ecology, 109(1), 541–571. https://doi.org/10.1111/1365-2745.13554
Fischer, T. C., Malnoy, M., Hofmann, T., Schwab, W., Palmieri, L., Wehrens, R., Schuch, L. A., Müller, M., Schimmelpfeng, H., Velasco, R., Martens, S., 2014: F1 hybrid of cultivated apple (Malus × domestica) and European pear (Pyrus com-munis) with fertile F2 offspring. Molecular Breeding 34, 817–828. https://doi.org/10.1007/s11032-014-0077-4
Idžojtić, M., 2009: Dendrologija – list (Dendrology - leaf). University of Zagreb, Faculty of Forestry and Wood Technology, Zagreb.
Khadivi, A., Heidari, P., Rezaei, M., Safari-Khuzani, A., Sahebi, M., 2019: Morphological variabilities of Crataegus monog-yna and C. pentagyna in northeastern areas of Iran. Industrial Crops and Products 139, 111521. https://doi.org/10.1016/j.indcrop.2019.111531
Khadivi-Khub, A., Karimi, S., Kameli, M., 2015: Morphological diversity of naturally grown Crataegus monogyna (Rosaceae, Maloideae) in Central Iran. Brazilian Journal of Botany 38, 921–936. https://doi.org/10.1007/s40415-015-0187-1
Korotkova, N., Parolly, G., Khachatryan, A., Ghulikyan, L., Sargsyan, H., Akopian, J., Borsch, T., Gruenstaeudl, M., 2018: Towards resolving the evolutionary history of Caucasian pears (Pyrus, Rosaceae) - Phylogenetic relationships, diver-gence times and leaf trait evolution. Journal of Sytematics and Evolution 56(1), 35–47. https://doi.org/10.1111/jse.12276
Kumar, C., Singh, S. K., Pramanick, K. K., Verma, M. K., Srivastav, M., Singh, R., Bharadwaj, C., Naga, K. C., 2018: Morpho-logical and biochemical diversity among the Malus species including indigenous Himalayan wild apples. Scientia Hor-ticulturae 233, 204–219. https://doi.org/10.1016/j.scienta.2018.01.037
Larsen, A. S., Jensen, M., Kler, E. D., 2008: Crossability between wild (Malus sylvestris) and cultivated (M. ? domestica) apples. Silvae Genetica 57(3), 127–130. https://doi.org/10.1515/sg-2008-0019
Manuela, D., Xu, M., 2020: Juvenile leaves or adult leaves: Determinants for vegetative phase change in flowering plants. International Journal of Molecular Science 21(24), 9753. https://doi.org/10.3390/ijms21249753
McNeill, J., Shaw, J. M. H., Wiersema, J. H., 2016: Proposal to preclude homonymy of generic names with names of inter-generic graft-hybrids (chimaeras). Taxon 65(5), 1198–1199. https://doi.org/10.12705/655.39
Nabavi, S. F., Habtemariam, S., Ahmed, T., Sureda, A., Daglia, M., Sobarzo-Sánchez, E., Nabavi, S. M., 2015: Polyphenolic composition of Crataegus monogyna Jacq.: From chemistry to medical applications. Nutrients 7(9), 7708–7728. https://doi.org/10.3390/nu7095361
Németh, C., Papp, N., Nosková, J., Höhn, M., 2020: Speciation by triparental hybridization in genus Sorbus (Rosaceae). Biologia Futura 71, 209–222. https://doi.org/10.1007/s42977-020-00003-x
Pasqualetto, G., Palmieri, L., Martens, S., Bus, V. G. M., Chagné, D., Wiedow, C., Malnoy, M. A., Gardiner, S. E., 2022: Mo-lecular characterization of intergeneric hybrids between Malus and Pyrus. Horticulture Research 10(1), uhac239. https://doi.org/10.1093/hr/uhac239
Phipps, J. B., 2016: Studies in Mespilus, Crataegus, and ×Crataemespilus (Rosaceae), i. differentiation of Mespilus and Crataegus, Expansion of ×Crataemespilus, with supplementary observations on differences between the Crataegus and Amelanchier clades. Phytotaxa 257(3), 201–229. https://doi.org/10.11646/phytotaxa.257.3.1
Poljak, I., Šatović, Z., Vidaković, A., Tumpa, K., Idžojtić, M., 2024: Population variability of rosemary willow (Salix eleagnos Scop.) based on leaf morphometry: Evidence of small and large-leaf morphotypes. Šumarski List 148(5-6), 219–236. https://doi.org/10.31298/sl.148.5-6.1
Postman, J. D., 2011: Intergeneric hybrids in Pyrinae (=Maloideae) subtribe of Pyreae in family Rosaceae at USDA gene-bank. Acta Horticulturae 918, 937–943. https://doi.org/10.17660/ActaHortic.2011.918.123
R Core Team, 2016: R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vi-enna. https://www.R-project.org/. Retrieved June 15, 2024.
Rehder, A., 1949: Biobliography of cultivated trees and shrubs, hardy in the cooler temperate regions of the northern hemisphere. The Arnold arboretum of Harvard University, Jamaica Plain, Massachusetts.
Rieseberg, R. H., Carney, S. E., 1998: Tansely review No. 102 Plant hybridization. New Phytologist 140, 599–624.
Schuck, D. J., 2008: Crataegus monogyna Jacq. In: Roloff, A., Weisgerber, H., Lang, U., Stimm, B. (eds.), Enzyklopädie der Holzgewdchse, 1–12. Wiley-VCH, Weinheim.
Shimura, I., Ito, Y., Seike, K., 1983: Intergeneric hybrid between Japanese pear and quince. Journal of the Japanese Soci-ety for Horticultural Science 52(3), 243–249. https://doi.org/10.2503/jjshs.52.243
Sokal, R. R., Rohlf, F. J., 2012: Biometry: The principles and practice of statistics in biological research. W.H. Freeman and Co., New York.
Statistica (Data Analysis Software System), 2018: Statistica, ver. 13, TIBCO Software Inc., Palo Alto. http://www.statsoft.com.
Sun, J., Zhao, D., Qiao, P., Wang, Y., Wu, P., Wang, K., Guo, L., Huang, L., Zhou, S., 2024: Phylogeny of genera in Maleae (Rosaceae) based on chloroplast genome analysis. Frontiers in Plants Science, 15. https://doi.org/10.3389/fpls.2024.1367645
Van Tuyl, J. M., de Jeu, M. J., 1997: Methods for overcoming interspecific crossing barriers. In: Sawhney, V. K., Shivanna, K. R. (eds.), Pollen biotechnology for crop production and improvement, 273–292. Cambridge University Press, New York.
Vidaković, A., Liber, Z., Šatović, Z., Idžojtić, M., Volenec, I., Zegnal, I., Pintar, V., Radunić, M., Poljak, I., 2021: Phenotypic diversity of almond-leaved pear (Pyrus spinosa Forssk.) along Eastern Adriatic coast. Forests 12, 1630. https:// doi.org/10.3390/f12121630
Vidaković, A., Šatović, Z., Liber, Z., Radunić, M., Skendrović Babojelić, M., Poljak, I., 2024: Genetic diversity of Pyrus py-raster (L.) Burgsd. and P. spinosa Forssk.: evidence of introgression from cultivated into wild pear populations. Trees. https://doi.org/10.1007/s00468-024-02553-2
Vidaković, A., Šatović, Z., Tumpa, K., Idžojtić, M., Liber, Z., Pintar, V., Radunić, M., Runjić, T. N., Runjić, M., Rošin, J., Gaunt, D., Poljak, I., 2022: Phenotypic variation in European wild pear (Pyrus pyraster (L.) Burgsd.) populations in the North-Western part of the Balkan Peninsula. Plants 11(3), 335. https://doi.org/10.3390/plants11030335
WFO, 2024: World Flora Online. Retrieved June 15, 2024 from https://www.worldfloraonline.org/
WinFoliaTM, 2001: WinFolia ver. PRO 2005b. Regent Instruments Inc., Quebec City.
Ye, B.-B., Zhang, K., Wang, J.-W., 2019: The role of miR156 in rejuvenation in Arabidopsis thaliana. Journal of Integrative Plant Biology 62(5), 550–555. https://doi.org/10.1111/jipb.12855
Zamani, A., Attar, F., Maroofi, H., 2012: A synopsis of the genus Pyrus (Rosaceae) in Iran. Nordic Journal of Botany 30(3), 310–332. https://doi.org/10.1111/j.1756-1051.2011.00989.x
Zhang, S. D., Jin, J. J., Chen, S. Y., Chase, M. W., Soltis, D. E., Li, H. T., Yang, J. B., Li, D. Z., Yi, T. S., 2017: Diversification of Rosaceae since the Late Cretaceous based on plastid phylogenomics. New Phytologist 214(3), 1355–1367. https://doi.org/10.1111/nph.14461
Zhang, Z., Sun, Y., Li, Y., 2020: Plant rejuvenation: from phenotypes to mechanisms. Plant Cell Reports 39(10), 1249–1262. https://doi.org/10.1007/s00299-020-02577-1
Zotz, G., Wilhelm, K., Becker, A., 2011: Heteroblasty – A review. The Botanical Review 77, 109–151. https://doi.org/10.1007/s12229-010-9062-8