Main Article Content

Abstract

This paper is aimed at investigating leaf morphological variability and possible hybridization between two species within the Rosaceae family: the one-seed hawthorn (Crataegus monogyna Jacq.) and the almond-leaved pear (Pyrus spinosa Forssk.). These two genera are taxonomically related and meet many prerequisites for successful ­hybridization between them, which prompted us to investigate the possibility of the presence of a long-described yet uninvestigated hybrid called ×Pyrocrataegus. The research was conducted along the Eastern Adriatic coast, where both species are widespread and often grow together in open woodlands, forest edges and abandoned agricultural ­areas. The examination of morphological variability was based on a morphometric analysis of seven populations ­using ten phenotypic traits of leaves. In general, our results showed great variability of leaf morphological traits within and between the studied populations, as well as a clear differentiation between the two species. The results of principal component analysis (PCA) showed a few intermediate individuals between the two species, indicating possible ­hybridization. However, as heteroblasty is present in P. spinosa, with its seedlings reported to have lobed, hawthorn-like leaves, dimorphism could also result from the reappearance of juvenile leaves on adult trees by means of rejuvenation. In order to draw a definitive conclusion about the existence of hybrid individuals in the next study, DNA markers and a much larger sample, especially morphologically intermediate individuals per population should be included.

Keywords

Croatia hybrids heteroblasty morphometric analysis morphological variability Rosaceae

Article Details

How to Cite
Vidaković, A., Šatović, Z., Liber, Z., Jurica, M., & Poljak, I. (2025). Leaf morphological variability of Pyrus spinosa and Crataegus monogyna and their potential hybridization. Acta Botanica Croatica, 84(2), 202–210. https://doi.org/10.37427/botcro-2025-016

References

  1. Bell, R. L., Hough, L. F., 1986: Interspecific and intergeneric hybridization of Pyrus. HortScience 21(1), 62–64. https://doi.org/10.21273/HORTSCI.21.1.62
  2. Campbell, C. S., Evans, R. C., Morgan, D. R., Dickinson, T. A., Arsenault, M. P., 2007: Phylogeny of subtribe Pyrinae (for-merly the Maloideae, Rosaceae): Limited resolution of a complex evolutionary history. Plant Systematics and Evolu-tion 266(1/2), 119–145. https://doi.org/10.1007/s00606-007-0545-y
  3. Chen, Y.-T., Shen, C.-H., Lin, W.-D., Chu, H.-A., Huang, B.-L., Kuo, C.-I., Yeh, K.-W., Huang, L.-C., Chang, I.-F., 2013: Small RNAs of Sequoia sempervirens during rejuvenation and phase change. Plant Biology 15(1), 27–36. https://doi.org/10.1111/j.1438-8677.2012.00622.x
  4. Considine, M. J., Wan, Y., D’Antuono, M. F., Zhou, Q., Han, M., Gao, H., Wang, M., 2012: Molecular genetic features of polyploidization and aneuploidization reveal unique patterns for genome duplication in diploid Malus. PloS One 7(1), e29449. https://doi.org/10.1371/journal.pone.0029449
  5. del Tredici, P., 2001: Sprouting in temperate trees: A morphological and ecological review. The Botanical Review 67(2), 121–140. https://doi.org/10.1007/BF02858075
  6. del Tredici, P., 2017: Aging and rejuvenation in trees. Arboricultural Consultant 50(1), 7–11.
  7. Dostálek, J., 1980: Pyrus spinosa und ihre Hybriden in Südwestbulgarien. Folia Geobotanica et Phytotaxonomica 15, 59–73. https://doi.org/10.1007/BF02853139
  8. Evans, R. C., Campbell, C. S., 2002: The origin of the apple subfamily (Maloideae; Rosaceae) is clarified by DNA sequence data from duplicated GBSSI genes. American Journal of Botany 89(9), 1478–1484. https://doi.org/10.3732/ajb.89.9.1478
  9. Excoffier, L., Lischer, H. E. L., 2010: Arlequin suite ver. 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Molecular Ecology Resources 10(3), 564–567. https://doi.org/10.1111/j.1755-0998.2010.02847.x
  10. Excoffier, L., Smouse, P. E., Quattro, J. M., 1992: Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitocondrial DNA restriction sites. Genetics 131(2), 479–491. https://doi.org/10.1093/genetics/131.2.479
  11. Fichtner, A., Wissemann, V., 2021: Biological flora of the British Isles: Crataegus monogyna. Journal of Ecology, 109(1), 541–571. https://doi.org/10.1111/1365-2745.13554
  12. Fischer, T. C., Malnoy, M., Hofmann, T., Schwab, W., Palmieri, L., Wehrens, R., Schuch, L. A., Müller, M., Schimmelpfeng, H., Velasco, R., Martens, S., 2014: F1 hybrid of cultivated apple (Malus × domestica) and European pear (Pyrus com-munis) with fertile F2 offspring. Molecular Breeding 34, 817–828. https://doi.org/10.1007/s11032-014-0077-4
  13. Idžojtić, M., 2009: Dendrologija – list (Dendrology - leaf). University of Zagreb, Faculty of Forestry and Wood Technology, Zagreb.
  14. Khadivi, A., Heidari, P., Rezaei, M., Safari-Khuzani, A., Sahebi, M., 2019: Morphological variabilities of Crataegus monog-yna and C. pentagyna in northeastern areas of Iran. Industrial Crops and Products 139, 111521. https://doi.org/10.1016/j.indcrop.2019.111531
  15. Khadivi-Khub, A., Karimi, S., Kameli, M., 2015: Morphological diversity of naturally grown Crataegus monogyna (Rosaceae, Maloideae) in Central Iran. Brazilian Journal of Botany 38, 921–936. https://doi.org/10.1007/s40415-015-0187-1
  16. Korotkova, N., Parolly, G., Khachatryan, A., Ghulikyan, L., Sargsyan, H., Akopian, J., Borsch, T., Gruenstaeudl, M., 2018: Towards resolving the evolutionary history of Caucasian pears (Pyrus, Rosaceae) - Phylogenetic relationships, diver-gence times and leaf trait evolution. Journal of Sytematics and Evolution 56(1), 35–47. https://doi.org/10.1111/jse.12276
  17. Kumar, C., Singh, S. K., Pramanick, K. K., Verma, M. K., Srivastav, M., Singh, R., Bharadwaj, C., Naga, K. C., 2018: Morpho-logical and biochemical diversity among the Malus species including indigenous Himalayan wild apples. Scientia Hor-ticulturae 233, 204–219. https://doi.org/10.1016/j.scienta.2018.01.037
  18. Larsen, A. S., Jensen, M., Kler, E. D., 2008: Crossability between wild (Malus sylvestris) and cultivated (M. ? domestica) apples. Silvae Genetica 57(3), 127–130. https://doi.org/10.1515/sg-2008-0019
  19. Manuela, D., Xu, M., 2020: Juvenile leaves or adult leaves: Determinants for vegetative phase change in flowering plants. International Journal of Molecular Science 21(24), 9753. https://doi.org/10.3390/ijms21249753
  20. McNeill, J., Shaw, J. M. H., Wiersema, J. H., 2016: Proposal to preclude homonymy of generic names with names of inter-generic graft-hybrids (chimaeras). Taxon 65(5), 1198–1199. https://doi.org/10.12705/655.39
  21. Nabavi, S. F., Habtemariam, S., Ahmed, T., Sureda, A., Daglia, M., Sobarzo-Sánchez, E., Nabavi, S. M., 2015: Polyphenolic composition of Crataegus monogyna Jacq.: From chemistry to medical applications. Nutrients 7(9), 7708–7728. https://doi.org/10.3390/nu7095361
  22. Németh, C., Papp, N., Nosková, J., Höhn, M., 2020: Speciation by triparental hybridization in genus Sorbus (Rosaceae). Biologia Futura 71, 209–222. https://doi.org/10.1007/s42977-020-00003-x
  23. Pasqualetto, G., Palmieri, L., Martens, S., Bus, V. G. M., Chagné, D., Wiedow, C., Malnoy, M. A., Gardiner, S. E., 2022: Mo-lecular characterization of intergeneric hybrids between Malus and Pyrus. Horticulture Research 10(1), uhac239. https://doi.org/10.1093/hr/uhac239
  24. Phipps, J. B., 2016: Studies in Mespilus, Crataegus, and ×Crataemespilus (Rosaceae), i. differentiation of Mespilus and Crataegus, Expansion of ×Crataemespilus, with supplementary observations on differences between the Crataegus and Amelanchier clades. Phytotaxa 257(3), 201–229. https://doi.org/10.11646/phytotaxa.257.3.1
  25. Poljak, I., Šatović, Z., Vidaković, A., Tumpa, K., Idžojtić, M., 2024: Population variability of rosemary willow (Salix eleagnos Scop.) based on leaf morphometry: Evidence of small and large-leaf morphotypes. Šumarski List 148(5-6), 219–236. https://doi.org/10.31298/sl.148.5-6.1
  26. Postman, J. D., 2011: Intergeneric hybrids in Pyrinae (=Maloideae) subtribe of Pyreae in family Rosaceae at USDA gene-bank. Acta Horticulturae 918, 937–943. https://doi.org/10.17660/ActaHortic.2011.918.123
  27. R Core Team, 2016: R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vi-enna. https://www.R-project.org/. Retrieved June 15, 2024.
  28. Rehder, A., 1949: Biobliography of cultivated trees and shrubs, hardy in the cooler temperate regions of the northern hemisphere. The Arnold arboretum of Harvard University, Jamaica Plain, Massachusetts.
  29. Rieseberg, R. H., Carney, S. E., 1998: Tansely review No. 102 Plant hybridization. New Phytologist 140, 599–624.
  30. Schuck, D. J., 2008: Crataegus monogyna Jacq. In: Roloff, A., Weisgerber, H., Lang, U., Stimm, B. (eds.), Enzyklopädie der Holzgewdchse, 1–12. Wiley-VCH, Weinheim.
  31. Shimura, I., Ito, Y., Seike, K., 1983: Intergeneric hybrid between Japanese pear and quince. Journal of the Japanese Soci-ety for Horticultural Science 52(3), 243–249. https://doi.org/10.2503/jjshs.52.243
  32. Sokal, R. R., Rohlf, F. J., 2012: Biometry: The principles and practice of statistics in biological research. W.H. Freeman and Co., New York.
  33. Statistica (Data Analysis Software System), 2018: Statistica, ver. 13, TIBCO Software Inc., Palo Alto. http://www.statsoft.com.
  34. Sun, J., Zhao, D., Qiao, P., Wang, Y., Wu, P., Wang, K., Guo, L., Huang, L., Zhou, S., 2024: Phylogeny of genera in Maleae (Rosaceae) based on chloroplast genome analysis. Frontiers in Plants Science, 15. https://doi.org/10.3389/fpls.2024.1367645
  35. Van Tuyl, J. M., de Jeu, M. J., 1997: Methods for overcoming interspecific crossing barriers. In: Sawhney, V. K., Shivanna, K. R. (eds.), Pollen biotechnology for crop production and improvement, 273–292. Cambridge University Press, New York.
  36. Vidaković, A., Liber, Z., Šatović, Z., Idžojtić, M., Volenec, I., Zegnal, I., Pintar, V., Radunić, M., Poljak, I., 2021: Phenotypic diversity of almond-leaved pear (Pyrus spinosa Forssk.) along Eastern Adriatic coast. Forests 12, 1630. https:// doi.org/10.3390/f12121630
  37. Vidaković, A., Šatović, Z., Liber, Z., Radunić, M., Skendrović Babojelić, M., Poljak, I., 2024: Genetic diversity of Pyrus py-raster (L.) Burgsd. and P. spinosa Forssk.: evidence of introgression from cultivated into wild pear populations. Trees. https://doi.org/10.1007/s00468-024-02553-2
  38. Vidaković, A., Šatović, Z., Tumpa, K., Idžojtić, M., Liber, Z., Pintar, V., Radunić, M., Runjić, T. N., Runjić, M., Rošin, J., Gaunt, D., Poljak, I., 2022: Phenotypic variation in European wild pear (Pyrus pyraster (L.) Burgsd.) populations in the North-Western part of the Balkan Peninsula. Plants 11(3), 335. https://doi.org/10.3390/plants11030335
  39. WFO, 2024: World Flora Online. Retrieved June 15, 2024 from https://www.worldfloraonline.org/
  40. WinFoliaTM, 2001: WinFolia ver. PRO 2005b. Regent Instruments Inc., Quebec City.
  41. Ye, B.-B., Zhang, K., Wang, J.-W., 2019: The role of miR156 in rejuvenation in Arabidopsis thaliana. Journal of Integrative Plant Biology 62(5), 550–555. https://doi.org/10.1111/jipb.12855
  42. Zamani, A., Attar, F., Maroofi, H., 2012: A synopsis of the genus Pyrus (Rosaceae) in Iran. Nordic Journal of Botany 30(3), 310–332. https://doi.org/10.1111/j.1756-1051.2011.00989.x
  43. Zhang, S. D., Jin, J. J., Chen, S. Y., Chase, M. W., Soltis, D. E., Li, H. T., Yang, J. B., Li, D. Z., Yi, T. S., 2017: Diversification of Rosaceae since the Late Cretaceous based on plastid phylogenomics. New Phytologist 214(3), 1355–1367. https://doi.org/10.1111/nph.14461
  44. Zhang, Z., Sun, Y., Li, Y., 2020: Plant rejuvenation: from phenotypes to mechanisms. Plant Cell Reports 39(10), 1249–1262. https://doi.org/10.1007/s00299-020-02577-1
  45. Zotz, G., Wilhelm, K., Becker, A., 2011: Heteroblasty – A review. The Botanical Review 77, 109–151. https://doi.org/10.1007/s12229-010-9062-8

Similar Articles

1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.