Main Article Content

Abstract

One of the key factors affecting plant survival and agricultural yield production is temperature. The magnitude of temperature extremes is increasing as a result of global climate change. The present study evaluated the impact of elevated temperature treatments on Brassica rapa seed germination, as well as of prolonged exposure of seedlings to temperatures of 37 °C and short-term exposure to the temperature of 45 °C. Elevated temperatures reduced seed germination rate and affected germination pattern. Both applied heat stresses negatively affected seedling development and root growth, and showed a differential physiological and molecular response. Under prolonged exposure to 37 °C seedling growth and development patterns were impaired but with no sign of oxidative stress, which could be related to increased indole-3-acetic acid (IAA), abscisic acid, enhanced heat shock protein 90 (HSP90) and reduced 1-aminocyclopropane-1-carboxylate levels. The short-term exposure to a temperature of 45 °C, a treatment mimicking a heat wave event, had more negative effects on seedling growth, which correlated with the appearance of oxidative stress. The extreme temperature significantly stimulated the gene expression of heat stress transcription factors HSFs and dehydration-responsive element-binding protein DREB2A, and induced the accumulation of auxin IAA and HSP90 proteins. Our study confirms the great importance of phytohormones and HSP90 in the heat stress response of B. rapa and emphasizes the potential for their manipulation in phytoprotection and breeding programs for adaptation to climate change.

Keywords

cabbage germination heat phytohormones rooth growth seedling growtg stress markers

Article Details

How to Cite
Tokić, M., Tkalec, M., Vitko, S., Salopek-Sondi, B., Ludwig-Müller, J., & Bauer, N. (2025). Physiological and molecular response of Brassica rapa to moderate and extreme heat. Acta Botanica Croatica, 84(2), 266–275. https://doi.org/10.37427/botcro-2025-028

References

  1. Ahammed, G.J., Yu, J.Q., Li, X., Zhou, J., Zhou, Y.H., Yu, J.Q., 2016: Role of hormones in plant adaptation to heat stress. In: Ahammed, G., Yu, J. (eds.), Plant hormones under challenging environmental factors, 1-21. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-7758-2
  2. Ahmad, M., Imtiaz, M., Shoib Nawaz, M., Mubeen, F., Imran, A., 2022: What did we learn from current progress in heat stress tolerance in plants? Can microbes be a solution? Frontiers in Plant Science 13, 1–19. https://doi.org/10.3389/fpls.2022.794782
  3. Akram, N. A., Waseem, M., Ameen, R., Ashraf, M., 2016: Trehalose pretreatment induces drought tolerance in radish (Raphanus sativus L.) plants: some key physio-biochemical traits. Acta Physiologiae Plantarum, 38(1). https://doi.org/10.1007/s11738-015-2018-1
  4. Ali, S., Hayat, K., Iqbal, A., Xie, L., 2020: Implications of abscisic acid in the drought stress tolerance of plants. Agronomy 10(9), 1323. https://doi.org/10.3390/agronomy10091323
  5. Anderson, R., Bayer, P.E., Edwards, D., 2020: Climate change and the need for agricultural adaptation. Current Opinion in Plant Biology 56, 197–202. https://doi.org/10.1016/j.pbi.2019.12.006
  6. Angadi, S. V., Cutforth, H.W., Miller, P.R., McConkey, B.G., Entz, M.H., Brandt, S.A., Volkmar, K.M., 2000: Response of three Brassica species to high temperature stress during reproductive growth. Canadian Journal of Plant Science 80, 693–701. https://doi.org/10.4141/P99-152
  7. Antunes, M. Sfakiotakis E.M. 2000: Effect of high temperature stress on ethylene biosynthesis, respiration and ripening of `Hayward` kiwifruit. Postharvest Biology and Technology. 20. 251-259. https://doi.org/10.1016/S0925-5214(00)00136-8
  8. Apel, K., Hirt, H., 2004: Reactive oxygen species: Metabolism, oxidative stress, and signal transduction. Annual Review of Plant Biology 55, 373–399. https://doi.org/10.1146/annurev.arplant.55.031903.141701
  9. Asthir, B., 2015: Mechanisms of heat tolerance in crop plants. Plant Biology 59, 620–628. https://doi.org/10.1007/s10535-015-0539-5
  10. Baron, K.N., Schroeder, D.F., Stasolla, C., 2012: Transcriptional response of abscisic acid (ABA) metabolism and transport to cold and heat stress applied at the reproductive stage of development in Arabidopsis thaliana. Plant Science 188–189, 48–59. https://doi.org/10.1016/j.plantsci.2012.03.001
  11. Bauer, N., Tkalec, M., Major, N., Talanga Vasari, A., Tokić, M., Vitko, S., Ban, D., Ban, S.G., Salopek-Sondi, B., 2022: Mechanisms of kale (Brassica oleracea var. acephala) tolerance to individual and combined stresses of drought and elevated temperature. International Journal of Molecular Science 23, 11494. https://doi.org/10.3390/ijms231911494
  12. Begcy, K., Sandhu, J., Walia, H., 2018: Transient heat stress during early seed development primes germination and seedling establishment in rice. Frontiers in Plant Science 871, 1–13. https://doi.org/10.3389/fpls.2018.01768
  13. Ben Ammar, H., Picchi, V., Arena, D., Treccarichi, S., Bianchi, G., Lo Scalzo, R., Marghali, S., Branca, F., 2022: Variation of bio-morphometric traits and antioxidant compounds of Brassica oleracea L. accessions in relation to drought stress. Agronomy 12(9), 2016. https://doi.org/10.3390/agronomy12092016
  14. Bianchimano, L., De Luca, M.B., Borniego, M.B., Iglesias, M.J., Casal, J.J., 2023: Temperature regulation of auxin-related gene expression and its implications for plant growth. Journal of Experimental Botany 74, 7015–7033. https://doi.org/10.1093/jxb/erad265
  15. Boter, M., Pozas, J., Jarillo, J.A., Piñeiro, M., Pernas, M., 2023: Brassica napus roots use different strategies to respond to warm temperatures. International Journal of Molecular Sciences 24, 1143. https://doi.org/10.3390/ijms24021143
  16. Boter, M., Calleja-Cabrera, J., Carrera-Castaño, G., Wagner, G., Hatzig, S.V., Snowdon, R.J., Legoahec, L., Bianchetti, G., Bouchereau, A., Nesi, N., Pernas, M., Oñate-Sánchezm L., 2019: An integrative approach to analyze seed germination in Brassica napus. Frontiers in Plant Science 10, 1342. https://doi.org/10.3389/fpls.2019.01342
  17. Calleja-Cabrera, J., Boter, M., Oñate-Sánchez, L., Pernas, M., 2020: Root growth adaptation to climate change in crops. Frontiers in Plant Science 11, 544. https://doi.org/10.3389/fpls.2020.00544
  18. Cohen, J.D., Baldi, B.G., Slovin, J.P., 1986: 13C6-[benzene ring]-indole-3-acetic acid. Plant Physiology 80, 14–19. https://doi.org/10.1104/pp.80.1.14
  19. Diamant, S., Eliahu, N., Rosenthal, D., Goloubinoff, P., 2001: Chemical chaperones regulate molecular chaperones in vitro and in cells under combined salt and heat stresses. Journal of Biological Chemistry 276, 39586-39591. https://doi.org/10.1074/jbc.M103081200
  20. Dobrá, J., Černý, M., Štorchová, H., Dobrev, P., Skalák, J., Jedelský, P.L., Lukšanová, H., Gaudinová, A., Pešek, B., Malbecka, J., Vanek, T., Brzobohatý, B., Vanková, R., 2015: The impact of heat stress targeting on the hormonal andtranscriptomic response in Arabidopsis. Plant Science 231, 52–61. https://doi.org/10.1016/j.plantsci.2014.11.005
  21. Dong, X., Yi, H., Lee, J., Nou, I.S., Han, C.T., Hur, Y., 2015: Global gene-expression analysis to identify differentially expressed genes critical for the heat stress response in Brassica rapa. PLoS One 10, e0130451. https://doi.org/10.1371/journal.pone.0130451
  22. Garay-Arroyo, A., De La Paz Sánchez, M., García-Ponce, B., Azpeitia, E., Álvarez-Buylla, E.R., 2012: Hormone symphony during root growth and development. Developmental Dynamics 241, 1867–1885. https://doi.org/10.1002/dvdy.23878
  23. Gray, W.M., Östin, A., Sandberg, G., Romano, C.P., Estelle, M., 1998: High temperature promotes auxin-mediated hypocotyl elongation in Arabidopsis. Proceedings of the National Academy of Sciences 95, 7197–7202. https://doi.org/10.1073/pnas.95.12.7197
  24. Gunasekera, C., Martin, L., Siddique, K. H. M., Walton, G. H., 2006: Genotype by environment interactions of Indian mustard (Brassica juncea L.) and canola (B. napus L.) in Mediterranean-type environments. European Journal of Agronomy 25(1), 1–12. https://doi.org/10.1016/j.eja.2005.08.002
  25. Hayat, S., Mir, B. A., Wani, A. S., Hasan, S. A., Irfan, M., Ahmad, A., 2011: Screening of salt-tolerant genotypes of Brassica juncea based on photosynthetic attributes. Journal of Plant Interactions 6(1), 53–60. https://doi.org/10.1080/17429145.2010.521592
  26. Heckathorn, S.A., Giri, A., Mishra, S., Bista, D., 2013: Heat stress and roots. In: Tuteja, N., Gill, S.S. (eds), Climate change and plant abiotic stress tolerance. Wiley Online Library, New Jersey. https://doi.org/10.1002/9783527675265.ch05
  27. Heschel, M.S., Selby, J., Butler, C., Whitelam, G.C., Sharrock, R.A., Donohue, K., 2007: A new role for phytochromes in temperature-dependent germination. New Phytologist 174, 735–741. https://doi.org/10.1111/j.1469-8137.2007.02044.x
  28. Hodges, D.M., DeLong, J.M., Forney, C.F., Prange, R.K., 1999: Improving the thiobarbituric acid-reactive-substances assay for estimating lipid peroxidation in plant tissues containing anthocyanin and other interfering compounds. Planta 207, 604–611. https://doi.org/10.1007/s004250050524
  29. Husen, A., Iqbal, M., Aref, I. M., 2014: Growth, water status, and leaf characteristics of Brassica carinata under drought and rehydration conditions. Brazilian Journal of Botany, 37(3), 217–227. https://doi.org/10.1007/s40415-014-0066-1
  30. Jha, U.C., Nayyar, H., Siddique, K.H.M., 2022: Role of phytohormones in regulating heat stress acclimation in agricultural crops. Journal of Plant Growth Regulation 41, 1041–1064. https://doi.org/10.1007/s00344-021-10362-x
  31. Kaushal, N., Bhandari, K., Kadambot, H. M., Siddique, K. H. M., Nayyar, H., 2016: Food crops face rising temperatures: An overview of responses, adaptive mechanisms, and approaches to improve heat tolerance. Cogent Food & Agriculture, 2(1). https://doi.org/10.1080/23311932.2015.1134380
  32. Li, X., Ahammed, G.J., Zhang, Y.Q., Zhang, G.Q., Sun, Z.H., Zhou, J., Zhou, Y.H., Xia, X.J., Yu, J.Q., Shi, K., 2015: Carbon dioxide enrichment alleviates heat stress by improving cellular redox homeostasis through an ABA-independent process in tomato plants. Plant Biology 17, 81–89. https://doi.org/10.1111/plb.12211
  33. Ludwig-Müller, J., Rattunde, R., Rößler, S., Liedel, K., Benade, F., Rost, A., Becker, J., 2021: Two auxinic herbicides affect Brassica napus plant hormone levels and induce molecular changes in transcription. Biomolecules 11, 1153–1175. https://doi.org/10.3390/biom11081153
  34. Luo, H., Xu, H., Chu, C., He, F., Fang, S., 2020: High Temperature can change root system architecture and intensify root interactions of plant seedlings. Frontiers in Plant Science 11, 160. https://doi.org/10.3389/fpls.2020.00160
  35. Mittler, R., Blumwald, E., 2015: The roles of ROS and ABA in systemic acquired acclimation. Plant Cell 27, 64–70. https://doi.org/10.1105/tpc.114.133090
  36. Mittler, R., Finka, A., Goloubinoff, P., 2012: How do plants feel the heat? Trends in Biochemical Sciences 37, 118–125. https://doi.org/10.1016/j.tibs.2011.11.007
  37. Mohamed, I.A.A., Shalby, N., Bai, C., Qin, M., Agami, R.A., Jie, K., Wang, B., Zhou, G., 2020: Stomatal and photosynthetic traits are associated with investigating sodium chloride tolerance of Brassica napus L. cultivars. Plants 9, 62. https://doi.org/10.3390/plants9010062
  38. Motsa, M.M., Slabbert, M.M., van Averbeke, W., Morey, L., 2015: Effect of light and temperature on seed germination of selected African leafy vegetables. South African Journal of Botany 99, 29–35. https://doi.org/10.1016/j.sajb.2015.03.185
  39. Muday, G.K., Rahman, A., Binder, B.M., 2012: Auxin and ethylene: collaborators or competitors? Trends in Plant Science 17(4), 181-195. https://doi.org/10.1016/j.tplants.2012.02.001
  40. Munns, R., Millar, A. H., 2023: Seven plant capacities to adapt to abiotic stress. Journal of Experimental Botany 74(15), 4308–4323. https://doi.org/10.1093/jxb/erad179
  41. Murashige, T., Skoog, F., 1962: A revised medium for rapid growth and bio assays with tobacco tissue cultures. Plant Physiology 15, 474–497. https://doi.org/https://doi.org/10.1111/j.1399-3054.1962.tb08052.x
  42. Ohama, N., Sato, H., Shinozaki, K., Yamaguchi-Shinozaki, K., 2017: Transcriptional regulatory network of plant heat stress response. Trends in Plant Science 22, 53–65. https://doi.org/10.1016/j.tplants.2016.08.015
  43. Pavlović, I., Mlinarić, S., Tarkowská, D., Oklestková, J., Novák, O., Lepeduš, H., Vujčić Bok, V., Radić Brkanac, S., Strnad, M., Salopek-Sondi, B., 2019: Early Brassica crops responses to salinity stress: a comparative analysis between Chinese cabbage, white cabbage and kale. Frontiers in Plant Science, 10, 450. https://doi.org/10.3389/fpls.2019.00450
  44. Pavlović, I., Petřík, I., Tarkowska, D., Lepeduš, H., Vujčić, V., Radić Brkanac, S., Novák, O., Salopek-Sondi, B. 2018: Correlations between phytohormones and drought tolerance in selected Brassica crops: Chinese cabbage, white cabbage and kale. International Journal of Molecular Sciences, 19, 2866; https://doi.org/10.3390/ijms19102866
  45. Peleg, Z., Blumwald, E., 2011: Hormone balance and abiotic stress tolerance in crop plants. Current Opinion in Plant Biology 14, 290–295. https://doi.org/10.1016/j.pbi.2011.02.001
  46. Pfaffl, M.W., 2001: A new mathematical model for relative quantification in real-time RT–PCR. Nucleic Acids Research 29, 45. https://doi.org/10.1093/nar/29.9.e45
  47. Pokharel, M., Chiluwal, A., Stamm, M., Deng, M., Rhodes, D. H., Jagadish, S. V. K., 2020: High night‐time temperature during flowering and pod filling affects flower opening, yield and seed fatty acid composition in canola. Journal of Agronomy and Crop Science 206(5), 579–596. https://doi.org/10.1111/jac.12408
  48. Poór, P., Nawaz, K., Gupta, R., Ashfaque, F., Khan, M.I.R., 2022: Ethylene involvement in the regulation of heat stress tolerance in plants. Plant Cell Reports 41, 675–698. https://doi.org/10.1007/s00299-021-02675-8
  49. Prerostova, S., Dobrev, P.I., Kramna, B., Gaudinova, A., Knirsch, V., Spichal, L., Zatloukal, M., Vankova, R., 2020: Heat acclimation and inhibition of cytokinin degradation positively affect heat stress tolerance of Arabidopsis. Frontiers in Plant Science 11, 1–14. https://doi.org/10.3389/fpls.2020.00087
  50. Rawlinson, C., Kamphuis, L.G., Gummer, J.P.A., Singh, K.B., Trengove, R.D., 2015: A rapid method for profiling of volatile and semi-volatile phytohormones using methyl chloroformate derivatisation and GC–MS. Metabolomics 11, 1922–1933. https://doi.org/10.1007/s11306-015-0837-0
  51. Raza, A., Charagh, S., Abbas, S., Hassan, M.U., Saeed, F., Haider, S., Sharif, R., Anand, A., Corpas, F.J., Jin, W., Varshney, R.K., 2023: Assessment of proline function in higher plants under extreme temperatures. Plant Biology 25, 379–395. https://doi.org/10.1111/plb.13510
  52. Rodríguez, V. M., Soengas, P., Alonso-Villaverde, V., Sotelo, T., Cartea, M. E., Velasco, P., 2015: Effect of temperature stress on the early vegetative development of Brassica oleracea L. BMC Plant Biology 15(1), 145. https://doi.org/10.1186/s12870-015-0535-0
  53. Sajad, S., Jian,g S., Anwar, M., Dai, Q., Luo, Y., Hassan, M.A., Tetteh, C., Song, J., 2022: Genome-wide study of Hsp90 gene family in cabbage (Brassica oleracea var. capitata L.) and their imperative roles in response to cold stress. Frontiers in Plant Science 13, 908511. https://doi.org/10.3389/fpls.2022.908511
  54. Salopek-Sondi, B., Tkalec, M., Bauer, N., Jasprica, N., Goreta Ban, S., 2025: Brassicaceae: stress responses and breeding strategies in unfriendly environments. In: Chen, J-T. (ed.) Plant sress tolerance, Molecular mechanisms and breeding strategies, 358-390. CRC Press. https://doi.org/10.1201/9781003457237-18
  55. Schneider, C.A., Rasband, W.S., Eliceiri, K.W., 2012: NIH Image to ImageJ: 25 years of image analysis HHS public access. Nature Methods 9, 671–675. https://doi.org/10.1038/nmeth.2089
  56. Seneviratne, S.I., Zhang, X., Adnan, M., Badi, W., Dereczynski, C., Di Luca, A., Ghosh, S., Iskandar, I., Kossin, J., Lewis, S., Otto, F., Pinto, I., Satoh, M., Vicente-Serrano, S.M., Wehner, M., Zhou, B., 2021: Weather and climate extreme events in a changing climate. doi: 10.1017/9781009157896.013. In: Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S.L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M.I., Huang, M., Leitzell, K., Lonnoy, E., Matthews, J.B.R., Maycock, T.K., Waterfield, T., Yelekçi, O., Yu, R., Zhou B. (eds.), Climate change 2021: The physical science basis. Contribution of working group i to the sixth assessment report of the intergovernmental panel on climate change. Cambridge University Press, 1513–1766. Cambridge, United Kingdom and New York.
  57. Sunkar, R., Bartels, D., Kirch, H.H., 2003: Overexpression of a stress-inducible aldehyde dehydrogenase gene from Arabidopsis thaliana in transgenic plants improves stress tolerance. Plant Journal 35, 452–464. https://doi.org/10.1046/j.1365-313X.2003.01819.x
  58. Staples, R.C., Stahmann, M.A., 1964: Changes in proteins and several enzymes in susceptible bean leaves after infection by the bean rust fungus. Phytopathology 54, 760–764.
  59. Szabados, L., Savouré, A., 2010: Proline: a multifunctional amino acid. Trends in Plant Science 15, 89–97. https://doi.org/10.1016/j.tplants.2009.11.009
  60. Taylor, S.C., Posch, A., 2014: The design of a quantitative western blot experiment. BioMed Research International 2014, 361590–361598. https://doi.org/10.1155/2014/361590
  61. Tiwari, M., Kumar, R., Min, D., Jagadish, S. V. K., 2022,: Genetic and molecular mechanisms underlying root architecture and function under heat stress—A hidden story. Plant, Cell & Environment 45, 771–788. https://doi.org/10.1111/pce.14266
  62. Tokić, M., Leljak Levanić, D., Ludwig-Müller, J., Bauer, N., 2023: Growth and molecular responses of tomato to prolonged and short-term heat exposure. International Journal of Molecular Sciences 24, 4456. https://doi.org/10.3390/ijms24054456
  63. Vandesompele, J., De Preter, K., Pattyn, F., Poppe, B., Van Roy, N., De Paepe, A., Speleman, F., 2002: Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biology 3, 00341–003412. https://doi.org/10.1186/gb-2002-3-7-research0034
  64. Villas-Bôas, S.G., Delicado, D.G., Åkesson, M., Nielsen, J., 2003: Simultaneous analysis of amino and nonamino organic acids as methyl chloroformate derivatives using gas chromatography-mass spectrometry. Analytical Biochemistry 322, 134–138. https://doi.org/10.1016/j.ab.2003.07.018
  65. Wahid, A., Gelani, S., Ashraf, M., Foolad, M.R., 2007: Heat tolerance in plants: An overview. Environmental and Experimental Botany 61, 199–223. https://doi.org/10.1016/j.envexpbot.2007.05.011
  66. Wang, L., Liu, F., Ju, L., Xue, .B, Wang, Y., Wang, D., Hou, D., 2022: Genome structures and evolution analysis of HSP90 gene family in Brassica napus reveal the possible roles of members in response to salt stress and the infection of Sclerotinia sclerotiorum. Frontiers in Plant Science 13, 854034. https://doi.org/10.3389/fpls.2022.854034
  67. Wilson, R.E., Jensen, E.H., Fernandez, G.C.J., 1992: Seed germination response for eleven forage cultivars of Brassica to temperature. Agronomy Journal 84, 200–202. https://doi.org/10.2134/agronj1992.00021962008400020015x
  68. Yamauchi, Y., Ogawa, M., Kuwahara, A., Hanada, A., Kamiya, Y., Yamaguchi, S., 2004: Activation of gibberellin biosynthesis and response pathways by low temperature during imbibition of Arabidopsis thaliana seeds. Plant Cell 16, 367–378. https://doi.org/10.1105/tpc.018143
  69. Yeh, C.H., Kaplinsky, J.N., Hu, C., Charng, Y., 2012: Some like it hot, some like it warm: Phenotyping to explore thermotolerance diversity. Plant Science 195, 10–23. https://doi.org/10.1016/j.plantsci.2012.06.004
  70. Yadukrishnan, P., Datta, S., 2021: Light and abscisic acid interplay in early seedling development. New Phytology 229, 763-769. https://doi.org/10.1111/nph.16963
  71. Yadukrishnan, P., Rahul, P.V., Datta, S., 2020: HY5 suppresses, rather than promotes, abscisic acid-mediated inhibition of postgermination seedling development. Plant Physiology 184(2), 574-578. https://doi.org/10.1104/pp.20.00783
  72. Zhao, J., Lu, Z., Wang, L., Jin, B., 2021: Plant responses to heat stress: Physiology, transcription, noncoding RNAs, and epigenetics. International Journal of Molecular Sciences 22, 1–14. https://doi.org/10.3390/ijms22010117
  73. Zheng, Y., Yang, Z., Xu, C., Wang, L., Huang, H., Yang, S., 2020: The interactive effects of daytime high temperature and humidity on growth and endogenous hormone concentration of tomato seedlings. HortScience 55, 1575–1583. https://doi.org/10.21273/HORTSCI15145-20

Similar Articles

<< < 9 10 11 12 13 14 15 16 > >> 

You may also start an advanced similarity search for this article.

Most read articles by the same author(s)