Main Article Content
Abstract
One of the key factors affecting plant survival and agricultural yield production is temperature. The magnitude of temperature extremes is increasing as a result of global climate change. The present study evaluated the impact of elevated temperature treatments on Brassica rapa seed germination, as well as of prolonged exposure of seedlings to temperatures of 37 °C and short-term exposure to the temperature of 45 °C. Elevated temperatures reduced seed germination rate and affected germination pattern. Both applied heat stresses negatively affected seedling development and root growth, and showed a differential physiological and molecular response. Under prolonged exposure to 37 °C seedling growth and development patterns were impaired but with no sign of oxidative stress, which could be related to increased indole-3-acetic acid (IAA), abscisic acid, enhanced heat shock protein 90 (HSP90) and reduced 1-aminocyclopropane-1-carboxylate levels. The short-term exposure to a temperature of 45 °C, a treatment mimicking a heat wave event, had more negative effects on seedling growth, which correlated with the appearance of oxidative stress. The extreme temperature significantly stimulated the gene expression of heat stress transcription factors HSFs and dehydration-responsive element-binding protein DREB2A, and induced the accumulation of auxin IAA and HSP90 proteins. Our study confirms the great importance of phytohormones and HSP90 in the heat stress response of B. rapa and emphasizes the potential for their manipulation in phytoprotection and breeding programs for adaptation to climate change.
Keywords
Article Details
Copyright (c) 2025 Natasa Bauer, Mirta Tokić, Mirta Tkalec, Branka Salopek Sondi, Jutta Ludwig-Müller

This work is licensed under a Creative Commons Attribution 4.0 International License.
Acta Botanica Croatica is an Open Access journal with minimal restrictions regarding content reuse. Immediately after publishing, all content becomes freely available to anyone for unlimited use and distribution, under the sole condition that the author(s) and the original source are properly attributed according to the Creative Commons Attribution 4.0 International License (CC BY 4.0).
CC BY 4.0 represents the highest level of Open Access, which maximizes dissemination of scholarly work and protects the rights of its authors. In Acta Botanica Croatica, authors hold the copyright of their work and retain unrestricted publishing rights.
By approving final Proof the authors grant to the publisher exclusive license to publish their article in print and on-line, in accordance with the Creative Commons Attribution (CC-BY-4.0) license.
References
- Ahammed, G.J., Yu, J.Q., Li, X., Zhou, J., Zhou, Y.H., Yu, J.Q., 2016: Role of hormones in plant adaptation to heat stress. In: Ahammed, G., Yu, J. (eds.), Plant hormones under challenging environmental factors, 1-21. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-7758-2
- Ahmad, M., Imtiaz, M., Shoib Nawaz, M., Mubeen, F., Imran, A., 2022: What did we learn from current progress in heat stress tolerance in plants? Can microbes be a solution? Frontiers in Plant Science 13, 1–19. https://doi.org/10.3389/fpls.2022.794782
- Akram, N. A., Waseem, M., Ameen, R., Ashraf, M., 2016: Trehalose pretreatment induces drought tolerance in radish (Raphanus sativus L.) plants: some key physio-biochemical traits. Acta Physiologiae Plantarum, 38(1). https://doi.org/10.1007/s11738-015-2018-1
- Ali, S., Hayat, K., Iqbal, A., Xie, L., 2020: Implications of abscisic acid in the drought stress tolerance of plants. Agronomy 10(9), 1323. https://doi.org/10.3390/agronomy10091323
- Anderson, R., Bayer, P.E., Edwards, D., 2020: Climate change and the need for agricultural adaptation. Current Opinion in Plant Biology 56, 197–202. https://doi.org/10.1016/j.pbi.2019.12.006
- Angadi, S. V., Cutforth, H.W., Miller, P.R., McConkey, B.G., Entz, M.H., Brandt, S.A., Volkmar, K.M., 2000: Response of three Brassica species to high temperature stress during reproductive growth. Canadian Journal of Plant Science 80, 693–701. https://doi.org/10.4141/P99-152
- Antunes, M. Sfakiotakis E.M. 2000: Effect of high temperature stress on ethylene biosynthesis, respiration and ripening of `Hayward` kiwifruit. Postharvest Biology and Technology. 20. 251-259. https://doi.org/10.1016/S0925-5214(00)00136-8
- Apel, K., Hirt, H., 2004: Reactive oxygen species: Metabolism, oxidative stress, and signal transduction. Annual Review of Plant Biology 55, 373–399. https://doi.org/10.1146/annurev.arplant.55.031903.141701
- Asthir, B., 2015: Mechanisms of heat tolerance in crop plants. Plant Biology 59, 620–628. https://doi.org/10.1007/s10535-015-0539-5
- Baron, K.N., Schroeder, D.F., Stasolla, C., 2012: Transcriptional response of abscisic acid (ABA) metabolism and transport to cold and heat stress applied at the reproductive stage of development in Arabidopsis thaliana. Plant Science 188–189, 48–59. https://doi.org/10.1016/j.plantsci.2012.03.001
- Bauer, N., Tkalec, M., Major, N., Talanga Vasari, A., Tokić, M., Vitko, S., Ban, D., Ban, S.G., Salopek-Sondi, B., 2022: Mechanisms of kale (Brassica oleracea var. acephala) tolerance to individual and combined stresses of drought and elevated temperature. International Journal of Molecular Science 23, 11494. https://doi.org/10.3390/ijms231911494
- Begcy, K., Sandhu, J., Walia, H., 2018: Transient heat stress during early seed development primes germination and seedling establishment in rice. Frontiers in Plant Science 871, 1–13. https://doi.org/10.3389/fpls.2018.01768
- Ben Ammar, H., Picchi, V., Arena, D., Treccarichi, S., Bianchi, G., Lo Scalzo, R., Marghali, S., Branca, F., 2022: Variation of bio-morphometric traits and antioxidant compounds of Brassica oleracea L. accessions in relation to drought stress. Agronomy 12(9), 2016. https://doi.org/10.3390/agronomy12092016
- Bianchimano, L., De Luca, M.B., Borniego, M.B., Iglesias, M.J., Casal, J.J., 2023: Temperature regulation of auxin-related gene expression and its implications for plant growth. Journal of Experimental Botany 74, 7015–7033. https://doi.org/10.1093/jxb/erad265
- Boter, M., Pozas, J., Jarillo, J.A., Piñeiro, M., Pernas, M., 2023: Brassica napus roots use different strategies to respond to warm temperatures. International Journal of Molecular Sciences 24, 1143. https://doi.org/10.3390/ijms24021143
- Boter, M., Calleja-Cabrera, J., Carrera-Castaño, G., Wagner, G., Hatzig, S.V., Snowdon, R.J., Legoahec, L., Bianchetti, G., Bouchereau, A., Nesi, N., Pernas, M., Oñate-Sánchezm L., 2019: An integrative approach to analyze seed germination in Brassica napus. Frontiers in Plant Science 10, 1342. https://doi.org/10.3389/fpls.2019.01342
- Calleja-Cabrera, J., Boter, M., Oñate-Sánchez, L., Pernas, M., 2020: Root growth adaptation to climate change in crops. Frontiers in Plant Science 11, 544. https://doi.org/10.3389/fpls.2020.00544
- Cohen, J.D., Baldi, B.G., Slovin, J.P., 1986: 13C6-[benzene ring]-indole-3-acetic acid. Plant Physiology 80, 14–19. https://doi.org/10.1104/pp.80.1.14
- Diamant, S., Eliahu, N., Rosenthal, D., Goloubinoff, P., 2001: Chemical chaperones regulate molecular chaperones in vitro and in cells under combined salt and heat stresses. Journal of Biological Chemistry 276, 39586-39591. https://doi.org/10.1074/jbc.M103081200
- Dobrá, J., Černý, M., Štorchová, H., Dobrev, P., Skalák, J., Jedelský, P.L., Lukšanová, H., Gaudinová, A., Pešek, B., Malbecka, J., Vanek, T., Brzobohatý, B., Vanková, R., 2015: The impact of heat stress targeting on the hormonal andtranscriptomic response in Arabidopsis. Plant Science 231, 52–61. https://doi.org/10.1016/j.plantsci.2014.11.005
- Dong, X., Yi, H., Lee, J., Nou, I.S., Han, C.T., Hur, Y., 2015: Global gene-expression analysis to identify differentially expressed genes critical for the heat stress response in Brassica rapa. PLoS One 10, e0130451. https://doi.org/10.1371/journal.pone.0130451
- Garay-Arroyo, A., De La Paz Sánchez, M., García-Ponce, B., Azpeitia, E., Álvarez-Buylla, E.R., 2012: Hormone symphony during root growth and development. Developmental Dynamics 241, 1867–1885. https://doi.org/10.1002/dvdy.23878
- Gray, W.M., Östin, A., Sandberg, G., Romano, C.P., Estelle, M., 1998: High temperature promotes auxin-mediated hypocotyl elongation in Arabidopsis. Proceedings of the National Academy of Sciences 95, 7197–7202. https://doi.org/10.1073/pnas.95.12.7197
- Gunasekera, C., Martin, L., Siddique, K. H. M., Walton, G. H., 2006: Genotype by environment interactions of Indian mustard (Brassica juncea L.) and canola (B. napus L.) in Mediterranean-type environments. European Journal of Agronomy 25(1), 1–12. https://doi.org/10.1016/j.eja.2005.08.002
- Hayat, S., Mir, B. A., Wani, A. S., Hasan, S. A., Irfan, M., Ahmad, A., 2011: Screening of salt-tolerant genotypes of Brassica juncea based on photosynthetic attributes. Journal of Plant Interactions 6(1), 53–60. https://doi.org/10.1080/17429145.2010.521592
- Heckathorn, S.A., Giri, A., Mishra, S., Bista, D., 2013: Heat stress and roots. In: Tuteja, N., Gill, S.S. (eds), Climate change and plant abiotic stress tolerance. Wiley Online Library, New Jersey. https://doi.org/10.1002/9783527675265.ch05
- Heschel, M.S., Selby, J., Butler, C., Whitelam, G.C., Sharrock, R.A., Donohue, K., 2007: A new role for phytochromes in temperature-dependent germination. New Phytologist 174, 735–741. https://doi.org/10.1111/j.1469-8137.2007.02044.x
- Hodges, D.M., DeLong, J.M., Forney, C.F., Prange, R.K., 1999: Improving the thiobarbituric acid-reactive-substances assay for estimating lipid peroxidation in plant tissues containing anthocyanin and other interfering compounds. Planta 207, 604–611. https://doi.org/10.1007/s004250050524
- Husen, A., Iqbal, M., Aref, I. M., 2014: Growth, water status, and leaf characteristics of Brassica carinata under drought and rehydration conditions. Brazilian Journal of Botany, 37(3), 217–227. https://doi.org/10.1007/s40415-014-0066-1
- Jha, U.C., Nayyar, H., Siddique, K.H.M., 2022: Role of phytohormones in regulating heat stress acclimation in agricultural crops. Journal of Plant Growth Regulation 41, 1041–1064. https://doi.org/10.1007/s00344-021-10362-x
- Kaushal, N., Bhandari, K., Kadambot, H. M., Siddique, K. H. M., Nayyar, H., 2016: Food crops face rising temperatures: An overview of responses, adaptive mechanisms, and approaches to improve heat tolerance. Cogent Food & Agriculture, 2(1). https://doi.org/10.1080/23311932.2015.1134380
- Li, X., Ahammed, G.J., Zhang, Y.Q., Zhang, G.Q., Sun, Z.H., Zhou, J., Zhou, Y.H., Xia, X.J., Yu, J.Q., Shi, K., 2015: Carbon dioxide enrichment alleviates heat stress by improving cellular redox homeostasis through an ABA-independent process in tomato plants. Plant Biology 17, 81–89. https://doi.org/10.1111/plb.12211
- Ludwig-Müller, J., Rattunde, R., Rößler, S., Liedel, K., Benade, F., Rost, A., Becker, J., 2021: Two auxinic herbicides affect Brassica napus plant hormone levels and induce molecular changes in transcription. Biomolecules 11, 1153–1175. https://doi.org/10.3390/biom11081153
- Luo, H., Xu, H., Chu, C., He, F., Fang, S., 2020: High Temperature can change root system architecture and intensify root interactions of plant seedlings. Frontiers in Plant Science 11, 160. https://doi.org/10.3389/fpls.2020.00160
- Mittler, R., Blumwald, E., 2015: The roles of ROS and ABA in systemic acquired acclimation. Plant Cell 27, 64–70. https://doi.org/10.1105/tpc.114.133090
- Mittler, R., Finka, A., Goloubinoff, P., 2012: How do plants feel the heat? Trends in Biochemical Sciences 37, 118–125. https://doi.org/10.1016/j.tibs.2011.11.007
- Mohamed, I.A.A., Shalby, N., Bai, C., Qin, M., Agami, R.A., Jie, K., Wang, B., Zhou, G., 2020: Stomatal and photosynthetic traits are associated with investigating sodium chloride tolerance of Brassica napus L. cultivars. Plants 9, 62. https://doi.org/10.3390/plants9010062
- Motsa, M.M., Slabbert, M.M., van Averbeke, W., Morey, L., 2015: Effect of light and temperature on seed germination of selected African leafy vegetables. South African Journal of Botany 99, 29–35. https://doi.org/10.1016/j.sajb.2015.03.185
- Muday, G.K., Rahman, A., Binder, B.M., 2012: Auxin and ethylene: collaborators or competitors? Trends in Plant Science 17(4), 181-195. https://doi.org/10.1016/j.tplants.2012.02.001
- Munns, R., Millar, A. H., 2023: Seven plant capacities to adapt to abiotic stress. Journal of Experimental Botany 74(15), 4308–4323. https://doi.org/10.1093/jxb/erad179
- Murashige, T., Skoog, F., 1962: A revised medium for rapid growth and bio assays with tobacco tissue cultures. Plant Physiology 15, 474–497. https://doi.org/https://doi.org/10.1111/j.1399-3054.1962.tb08052.x
- Ohama, N., Sato, H., Shinozaki, K., Yamaguchi-Shinozaki, K., 2017: Transcriptional regulatory network of plant heat stress response. Trends in Plant Science 22, 53–65. https://doi.org/10.1016/j.tplants.2016.08.015
- Pavlović, I., Mlinarić, S., Tarkowská, D., Oklestková, J., Novák, O., Lepeduš, H., Vujčić Bok, V., Radić Brkanac, S., Strnad, M., Salopek-Sondi, B., 2019: Early Brassica crops responses to salinity stress: a comparative analysis between Chinese cabbage, white cabbage and kale. Frontiers in Plant Science, 10, 450. https://doi.org/10.3389/fpls.2019.00450
- Pavlović, I., Petřík, I., Tarkowska, D., Lepeduš, H., Vujčić, V., Radić Brkanac, S., Novák, O., Salopek-Sondi, B. 2018: Correlations between phytohormones and drought tolerance in selected Brassica crops: Chinese cabbage, white cabbage and kale. International Journal of Molecular Sciences, 19, 2866; https://doi.org/10.3390/ijms19102866
- Peleg, Z., Blumwald, E., 2011: Hormone balance and abiotic stress tolerance in crop plants. Current Opinion in Plant Biology 14, 290–295. https://doi.org/10.1016/j.pbi.2011.02.001
- Pfaffl, M.W., 2001: A new mathematical model for relative quantification in real-time RT–PCR. Nucleic Acids Research 29, 45. https://doi.org/10.1093/nar/29.9.e45
- Pokharel, M., Chiluwal, A., Stamm, M., Deng, M., Rhodes, D. H., Jagadish, S. V. K., 2020: High night‐time temperature during flowering and pod filling affects flower opening, yield and seed fatty acid composition in canola. Journal of Agronomy and Crop Science 206(5), 579–596. https://doi.org/10.1111/jac.12408
- Poór, P., Nawaz, K., Gupta, R., Ashfaque, F., Khan, M.I.R., 2022: Ethylene involvement in the regulation of heat stress tolerance in plants. Plant Cell Reports 41, 675–698. https://doi.org/10.1007/s00299-021-02675-8
- Prerostova, S., Dobrev, P.I., Kramna, B., Gaudinova, A., Knirsch, V., Spichal, L., Zatloukal, M., Vankova, R., 2020: Heat acclimation and inhibition of cytokinin degradation positively affect heat stress tolerance of Arabidopsis. Frontiers in Plant Science 11, 1–14. https://doi.org/10.3389/fpls.2020.00087
- Rawlinson, C., Kamphuis, L.G., Gummer, J.P.A., Singh, K.B., Trengove, R.D., 2015: A rapid method for profiling of volatile and semi-volatile phytohormones using methyl chloroformate derivatisation and GC–MS. Metabolomics 11, 1922–1933. https://doi.org/10.1007/s11306-015-0837-0
- Raza, A., Charagh, S., Abbas, S., Hassan, M.U., Saeed, F., Haider, S., Sharif, R., Anand, A., Corpas, F.J., Jin, W., Varshney, R.K., 2023: Assessment of proline function in higher plants under extreme temperatures. Plant Biology 25, 379–395. https://doi.org/10.1111/plb.13510
- Rodríguez, V. M., Soengas, P., Alonso-Villaverde, V., Sotelo, T., Cartea, M. E., Velasco, P., 2015: Effect of temperature stress on the early vegetative development of Brassica oleracea L. BMC Plant Biology 15(1), 145. https://doi.org/10.1186/s12870-015-0535-0
- Sajad, S., Jian,g S., Anwar, M., Dai, Q., Luo, Y., Hassan, M.A., Tetteh, C., Song, J., 2022: Genome-wide study of Hsp90 gene family in cabbage (Brassica oleracea var. capitata L.) and their imperative roles in response to cold stress. Frontiers in Plant Science 13, 908511. https://doi.org/10.3389/fpls.2022.908511
- Salopek-Sondi, B., Tkalec, M., Bauer, N., Jasprica, N., Goreta Ban, S., 2025: Brassicaceae: stress responses and breeding strategies in unfriendly environments. In: Chen, J-T. (ed.) Plant sress tolerance, Molecular mechanisms and breeding strategies, 358-390. CRC Press. https://doi.org/10.1201/9781003457237-18
- Schneider, C.A., Rasband, W.S., Eliceiri, K.W., 2012: NIH Image to ImageJ: 25 years of image analysis HHS public access. Nature Methods 9, 671–675. https://doi.org/10.1038/nmeth.2089
- Seneviratne, S.I., Zhang, X., Adnan, M., Badi, W., Dereczynski, C., Di Luca, A., Ghosh, S., Iskandar, I., Kossin, J., Lewis, S., Otto, F., Pinto, I., Satoh, M., Vicente-Serrano, S.M., Wehner, M., Zhou, B., 2021: Weather and climate extreme events in a changing climate. doi: 10.1017/9781009157896.013. In: Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S.L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M.I., Huang, M., Leitzell, K., Lonnoy, E., Matthews, J.B.R., Maycock, T.K., Waterfield, T., Yelekçi, O., Yu, R., Zhou B. (eds.), Climate change 2021: The physical science basis. Contribution of working group i to the sixth assessment report of the intergovernmental panel on climate change. Cambridge University Press, 1513–1766. Cambridge, United Kingdom and New York.
- Sunkar, R., Bartels, D., Kirch, H.H., 2003: Overexpression of a stress-inducible aldehyde dehydrogenase gene from Arabidopsis thaliana in transgenic plants improves stress tolerance. Plant Journal 35, 452–464. https://doi.org/10.1046/j.1365-313X.2003.01819.x
- Staples, R.C., Stahmann, M.A., 1964: Changes in proteins and several enzymes in susceptible bean leaves after infection by the bean rust fungus. Phytopathology 54, 760–764.
- Szabados, L., Savouré, A., 2010: Proline: a multifunctional amino acid. Trends in Plant Science 15, 89–97. https://doi.org/10.1016/j.tplants.2009.11.009
- Taylor, S.C., Posch, A., 2014: The design of a quantitative western blot experiment. BioMed Research International 2014, 361590–361598. https://doi.org/10.1155/2014/361590
- Tiwari, M., Kumar, R., Min, D., Jagadish, S. V. K., 2022,: Genetic and molecular mechanisms underlying root architecture and function under heat stress—A hidden story. Plant, Cell & Environment 45, 771–788. https://doi.org/10.1111/pce.14266
- Tokić, M., Leljak Levanić, D., Ludwig-Müller, J., Bauer, N., 2023: Growth and molecular responses of tomato to prolonged and short-term heat exposure. International Journal of Molecular Sciences 24, 4456. https://doi.org/10.3390/ijms24054456
- Vandesompele, J., De Preter, K., Pattyn, F., Poppe, B., Van Roy, N., De Paepe, A., Speleman, F., 2002: Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biology 3, 00341–003412. https://doi.org/10.1186/gb-2002-3-7-research0034
- Villas-Bôas, S.G., Delicado, D.G., Åkesson, M., Nielsen, J., 2003: Simultaneous analysis of amino and nonamino organic acids as methyl chloroformate derivatives using gas chromatography-mass spectrometry. Analytical Biochemistry 322, 134–138. https://doi.org/10.1016/j.ab.2003.07.018
- Wahid, A., Gelani, S., Ashraf, M., Foolad, M.R., 2007: Heat tolerance in plants: An overview. Environmental and Experimental Botany 61, 199–223. https://doi.org/10.1016/j.envexpbot.2007.05.011
- Wang, L., Liu, F., Ju, L., Xue, .B, Wang, Y., Wang, D., Hou, D., 2022: Genome structures and evolution analysis of HSP90 gene family in Brassica napus reveal the possible roles of members in response to salt stress and the infection of Sclerotinia sclerotiorum. Frontiers in Plant Science 13, 854034. https://doi.org/10.3389/fpls.2022.854034
- Wilson, R.E., Jensen, E.H., Fernandez, G.C.J., 1992: Seed germination response for eleven forage cultivars of Brassica to temperature. Agronomy Journal 84, 200–202. https://doi.org/10.2134/agronj1992.00021962008400020015x
- Yamauchi, Y., Ogawa, M., Kuwahara, A., Hanada, A., Kamiya, Y., Yamaguchi, S., 2004: Activation of gibberellin biosynthesis and response pathways by low temperature during imbibition of Arabidopsis thaliana seeds. Plant Cell 16, 367–378. https://doi.org/10.1105/tpc.018143
- Yeh, C.H., Kaplinsky, J.N., Hu, C., Charng, Y., 2012: Some like it hot, some like it warm: Phenotyping to explore thermotolerance diversity. Plant Science 195, 10–23. https://doi.org/10.1016/j.plantsci.2012.06.004
- Yadukrishnan, P., Datta, S., 2021: Light and abscisic acid interplay in early seedling development. New Phytology 229, 763-769. https://doi.org/10.1111/nph.16963
- Yadukrishnan, P., Rahul, P.V., Datta, S., 2020: HY5 suppresses, rather than promotes, abscisic acid-mediated inhibition of postgermination seedling development. Plant Physiology 184(2), 574-578. https://doi.org/10.1104/pp.20.00783
- Zhao, J., Lu, Z., Wang, L., Jin, B., 2021: Plant responses to heat stress: Physiology, transcription, noncoding RNAs, and epigenetics. International Journal of Molecular Sciences 22, 1–14. https://doi.org/10.3390/ijms22010117
- Zheng, Y., Yang, Z., Xu, C., Wang, L., Huang, H., Yang, S., 2020: The interactive effects of daytime high temperature and humidity on growth and endogenous hormone concentration of tomato seedlings. HortScience 55, 1575–1583. https://doi.org/10.21273/HORTSCI15145-20
References
Ahammed, G.J., Yu, J.Q., Li, X., Zhou, J., Zhou, Y.H., Yu, J.Q., 2016: Role of hormones in plant adaptation to heat stress. In: Ahammed, G., Yu, J. (eds.), Plant hormones under challenging environmental factors, 1-21. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-7758-2
Ahmad, M., Imtiaz, M., Shoib Nawaz, M., Mubeen, F., Imran, A., 2022: What did we learn from current progress in heat stress tolerance in plants? Can microbes be a solution? Frontiers in Plant Science 13, 1–19. https://doi.org/10.3389/fpls.2022.794782
Akram, N. A., Waseem, M., Ameen, R., Ashraf, M., 2016: Trehalose pretreatment induces drought tolerance in radish (Raphanus sativus L.) plants: some key physio-biochemical traits. Acta Physiologiae Plantarum, 38(1). https://doi.org/10.1007/s11738-015-2018-1
Ali, S., Hayat, K., Iqbal, A., Xie, L., 2020: Implications of abscisic acid in the drought stress tolerance of plants. Agronomy 10(9), 1323. https://doi.org/10.3390/agronomy10091323
Anderson, R., Bayer, P.E., Edwards, D., 2020: Climate change and the need for agricultural adaptation. Current Opinion in Plant Biology 56, 197–202. https://doi.org/10.1016/j.pbi.2019.12.006
Angadi, S. V., Cutforth, H.W., Miller, P.R., McConkey, B.G., Entz, M.H., Brandt, S.A., Volkmar, K.M., 2000: Response of three Brassica species to high temperature stress during reproductive growth. Canadian Journal of Plant Science 80, 693–701. https://doi.org/10.4141/P99-152
Antunes, M. Sfakiotakis E.M. 2000: Effect of high temperature stress on ethylene biosynthesis, respiration and ripening of `Hayward` kiwifruit. Postharvest Biology and Technology. 20. 251-259. https://doi.org/10.1016/S0925-5214(00)00136-8
Apel, K., Hirt, H., 2004: Reactive oxygen species: Metabolism, oxidative stress, and signal transduction. Annual Review of Plant Biology 55, 373–399. https://doi.org/10.1146/annurev.arplant.55.031903.141701
Asthir, B., 2015: Mechanisms of heat tolerance in crop plants. Plant Biology 59, 620–628. https://doi.org/10.1007/s10535-015-0539-5
Baron, K.N., Schroeder, D.F., Stasolla, C., 2012: Transcriptional response of abscisic acid (ABA) metabolism and transport to cold and heat stress applied at the reproductive stage of development in Arabidopsis thaliana. Plant Science 188–189, 48–59. https://doi.org/10.1016/j.plantsci.2012.03.001
Bauer, N., Tkalec, M., Major, N., Talanga Vasari, A., Tokić, M., Vitko, S., Ban, D., Ban, S.G., Salopek-Sondi, B., 2022: Mechanisms of kale (Brassica oleracea var. acephala) tolerance to individual and combined stresses of drought and elevated temperature. International Journal of Molecular Science 23, 11494. https://doi.org/10.3390/ijms231911494
Begcy, K., Sandhu, J., Walia, H., 2018: Transient heat stress during early seed development primes germination and seedling establishment in rice. Frontiers in Plant Science 871, 1–13. https://doi.org/10.3389/fpls.2018.01768
Ben Ammar, H., Picchi, V., Arena, D., Treccarichi, S., Bianchi, G., Lo Scalzo, R., Marghali, S., Branca, F., 2022: Variation of bio-morphometric traits and antioxidant compounds of Brassica oleracea L. accessions in relation to drought stress. Agronomy 12(9), 2016. https://doi.org/10.3390/agronomy12092016
Bianchimano, L., De Luca, M.B., Borniego, M.B., Iglesias, M.J., Casal, J.J., 2023: Temperature regulation of auxin-related gene expression and its implications for plant growth. Journal of Experimental Botany 74, 7015–7033. https://doi.org/10.1093/jxb/erad265
Boter, M., Pozas, J., Jarillo, J.A., Piñeiro, M., Pernas, M., 2023: Brassica napus roots use different strategies to respond to warm temperatures. International Journal of Molecular Sciences 24, 1143. https://doi.org/10.3390/ijms24021143
Boter, M., Calleja-Cabrera, J., Carrera-Castaño, G., Wagner, G., Hatzig, S.V., Snowdon, R.J., Legoahec, L., Bianchetti, G., Bouchereau, A., Nesi, N., Pernas, M., Oñate-Sánchezm L., 2019: An integrative approach to analyze seed germination in Brassica napus. Frontiers in Plant Science 10, 1342. https://doi.org/10.3389/fpls.2019.01342
Calleja-Cabrera, J., Boter, M., Oñate-Sánchez, L., Pernas, M., 2020: Root growth adaptation to climate change in crops. Frontiers in Plant Science 11, 544. https://doi.org/10.3389/fpls.2020.00544
Cohen, J.D., Baldi, B.G., Slovin, J.P., 1986: 13C6-[benzene ring]-indole-3-acetic acid. Plant Physiology 80, 14–19. https://doi.org/10.1104/pp.80.1.14
Diamant, S., Eliahu, N., Rosenthal, D., Goloubinoff, P., 2001: Chemical chaperones regulate molecular chaperones in vitro and in cells under combined salt and heat stresses. Journal of Biological Chemistry 276, 39586-39591. https://doi.org/10.1074/jbc.M103081200
Dobrá, J., Černý, M., Štorchová, H., Dobrev, P., Skalák, J., Jedelský, P.L., Lukšanová, H., Gaudinová, A., Pešek, B., Malbecka, J., Vanek, T., Brzobohatý, B., Vanková, R., 2015: The impact of heat stress targeting on the hormonal andtranscriptomic response in Arabidopsis. Plant Science 231, 52–61. https://doi.org/10.1016/j.plantsci.2014.11.005
Dong, X., Yi, H., Lee, J., Nou, I.S., Han, C.T., Hur, Y., 2015: Global gene-expression analysis to identify differentially expressed genes critical for the heat stress response in Brassica rapa. PLoS One 10, e0130451. https://doi.org/10.1371/journal.pone.0130451
Garay-Arroyo, A., De La Paz Sánchez, M., García-Ponce, B., Azpeitia, E., Álvarez-Buylla, E.R., 2012: Hormone symphony during root growth and development. Developmental Dynamics 241, 1867–1885. https://doi.org/10.1002/dvdy.23878
Gray, W.M., Östin, A., Sandberg, G., Romano, C.P., Estelle, M., 1998: High temperature promotes auxin-mediated hypocotyl elongation in Arabidopsis. Proceedings of the National Academy of Sciences 95, 7197–7202. https://doi.org/10.1073/pnas.95.12.7197
Gunasekera, C., Martin, L., Siddique, K. H. M., Walton, G. H., 2006: Genotype by environment interactions of Indian mustard (Brassica juncea L.) and canola (B. napus L.) in Mediterranean-type environments. European Journal of Agronomy 25(1), 1–12. https://doi.org/10.1016/j.eja.2005.08.002
Hayat, S., Mir, B. A., Wani, A. S., Hasan, S. A., Irfan, M., Ahmad, A., 2011: Screening of salt-tolerant genotypes of Brassica juncea based on photosynthetic attributes. Journal of Plant Interactions 6(1), 53–60. https://doi.org/10.1080/17429145.2010.521592
Heckathorn, S.A., Giri, A., Mishra, S., Bista, D., 2013: Heat stress and roots. In: Tuteja, N., Gill, S.S. (eds), Climate change and plant abiotic stress tolerance. Wiley Online Library, New Jersey. https://doi.org/10.1002/9783527675265.ch05
Heschel, M.S., Selby, J., Butler, C., Whitelam, G.C., Sharrock, R.A., Donohue, K., 2007: A new role for phytochromes in temperature-dependent germination. New Phytologist 174, 735–741. https://doi.org/10.1111/j.1469-8137.2007.02044.x
Hodges, D.M., DeLong, J.M., Forney, C.F., Prange, R.K., 1999: Improving the thiobarbituric acid-reactive-substances assay for estimating lipid peroxidation in plant tissues containing anthocyanin and other interfering compounds. Planta 207, 604–611. https://doi.org/10.1007/s004250050524
Husen, A., Iqbal, M., Aref, I. M., 2014: Growth, water status, and leaf characteristics of Brassica carinata under drought and rehydration conditions. Brazilian Journal of Botany, 37(3), 217–227. https://doi.org/10.1007/s40415-014-0066-1
Jha, U.C., Nayyar, H., Siddique, K.H.M., 2022: Role of phytohormones in regulating heat stress acclimation in agricultural crops. Journal of Plant Growth Regulation 41, 1041–1064. https://doi.org/10.1007/s00344-021-10362-x
Kaushal, N., Bhandari, K., Kadambot, H. M., Siddique, K. H. M., Nayyar, H., 2016: Food crops face rising temperatures: An overview of responses, adaptive mechanisms, and approaches to improve heat tolerance. Cogent Food & Agriculture, 2(1). https://doi.org/10.1080/23311932.2015.1134380
Li, X., Ahammed, G.J., Zhang, Y.Q., Zhang, G.Q., Sun, Z.H., Zhou, J., Zhou, Y.H., Xia, X.J., Yu, J.Q., Shi, K., 2015: Carbon dioxide enrichment alleviates heat stress by improving cellular redox homeostasis through an ABA-independent process in tomato plants. Plant Biology 17, 81–89. https://doi.org/10.1111/plb.12211
Ludwig-Müller, J., Rattunde, R., Rößler, S., Liedel, K., Benade, F., Rost, A., Becker, J., 2021: Two auxinic herbicides affect Brassica napus plant hormone levels and induce molecular changes in transcription. Biomolecules 11, 1153–1175. https://doi.org/10.3390/biom11081153
Luo, H., Xu, H., Chu, C., He, F., Fang, S., 2020: High Temperature can change root system architecture and intensify root interactions of plant seedlings. Frontiers in Plant Science 11, 160. https://doi.org/10.3389/fpls.2020.00160
Mittler, R., Blumwald, E., 2015: The roles of ROS and ABA in systemic acquired acclimation. Plant Cell 27, 64–70. https://doi.org/10.1105/tpc.114.133090
Mittler, R., Finka, A., Goloubinoff, P., 2012: How do plants feel the heat? Trends in Biochemical Sciences 37, 118–125. https://doi.org/10.1016/j.tibs.2011.11.007
Mohamed, I.A.A., Shalby, N., Bai, C., Qin, M., Agami, R.A., Jie, K., Wang, B., Zhou, G., 2020: Stomatal and photosynthetic traits are associated with investigating sodium chloride tolerance of Brassica napus L. cultivars. Plants 9, 62. https://doi.org/10.3390/plants9010062
Motsa, M.M., Slabbert, M.M., van Averbeke, W., Morey, L., 2015: Effect of light and temperature on seed germination of selected African leafy vegetables. South African Journal of Botany 99, 29–35. https://doi.org/10.1016/j.sajb.2015.03.185
Muday, G.K., Rahman, A., Binder, B.M., 2012: Auxin and ethylene: collaborators or competitors? Trends in Plant Science 17(4), 181-195. https://doi.org/10.1016/j.tplants.2012.02.001
Munns, R., Millar, A. H., 2023: Seven plant capacities to adapt to abiotic stress. Journal of Experimental Botany 74(15), 4308–4323. https://doi.org/10.1093/jxb/erad179
Murashige, T., Skoog, F., 1962: A revised medium for rapid growth and bio assays with tobacco tissue cultures. Plant Physiology 15, 474–497. https://doi.org/https://doi.org/10.1111/j.1399-3054.1962.tb08052.x
Ohama, N., Sato, H., Shinozaki, K., Yamaguchi-Shinozaki, K., 2017: Transcriptional regulatory network of plant heat stress response. Trends in Plant Science 22, 53–65. https://doi.org/10.1016/j.tplants.2016.08.015
Pavlović, I., Mlinarić, S., Tarkowská, D., Oklestková, J., Novák, O., Lepeduš, H., Vujčić Bok, V., Radić Brkanac, S., Strnad, M., Salopek-Sondi, B., 2019: Early Brassica crops responses to salinity stress: a comparative analysis between Chinese cabbage, white cabbage and kale. Frontiers in Plant Science, 10, 450. https://doi.org/10.3389/fpls.2019.00450
Pavlović, I., Petřík, I., Tarkowska, D., Lepeduš, H., Vujčić, V., Radić Brkanac, S., Novák, O., Salopek-Sondi, B. 2018: Correlations between phytohormones and drought tolerance in selected Brassica crops: Chinese cabbage, white cabbage and kale. International Journal of Molecular Sciences, 19, 2866; https://doi.org/10.3390/ijms19102866
Peleg, Z., Blumwald, E., 2011: Hormone balance and abiotic stress tolerance in crop plants. Current Opinion in Plant Biology 14, 290–295. https://doi.org/10.1016/j.pbi.2011.02.001
Pfaffl, M.W., 2001: A new mathematical model for relative quantification in real-time RT–PCR. Nucleic Acids Research 29, 45. https://doi.org/10.1093/nar/29.9.e45
Pokharel, M., Chiluwal, A., Stamm, M., Deng, M., Rhodes, D. H., Jagadish, S. V. K., 2020: High night‐time temperature during flowering and pod filling affects flower opening, yield and seed fatty acid composition in canola. Journal of Agronomy and Crop Science 206(5), 579–596. https://doi.org/10.1111/jac.12408
Poór, P., Nawaz, K., Gupta, R., Ashfaque, F., Khan, M.I.R., 2022: Ethylene involvement in the regulation of heat stress tolerance in plants. Plant Cell Reports 41, 675–698. https://doi.org/10.1007/s00299-021-02675-8
Prerostova, S., Dobrev, P.I., Kramna, B., Gaudinova, A., Knirsch, V., Spichal, L., Zatloukal, M., Vankova, R., 2020: Heat acclimation and inhibition of cytokinin degradation positively affect heat stress tolerance of Arabidopsis. Frontiers in Plant Science 11, 1–14. https://doi.org/10.3389/fpls.2020.00087
Rawlinson, C., Kamphuis, L.G., Gummer, J.P.A., Singh, K.B., Trengove, R.D., 2015: A rapid method for profiling of volatile and semi-volatile phytohormones using methyl chloroformate derivatisation and GC–MS. Metabolomics 11, 1922–1933. https://doi.org/10.1007/s11306-015-0837-0
Raza, A., Charagh, S., Abbas, S., Hassan, M.U., Saeed, F., Haider, S., Sharif, R., Anand, A., Corpas, F.J., Jin, W., Varshney, R.K., 2023: Assessment of proline function in higher plants under extreme temperatures. Plant Biology 25, 379–395. https://doi.org/10.1111/plb.13510
Rodríguez, V. M., Soengas, P., Alonso-Villaverde, V., Sotelo, T., Cartea, M. E., Velasco, P., 2015: Effect of temperature stress on the early vegetative development of Brassica oleracea L. BMC Plant Biology 15(1), 145. https://doi.org/10.1186/s12870-015-0535-0
Sajad, S., Jian,g S., Anwar, M., Dai, Q., Luo, Y., Hassan, M.A., Tetteh, C., Song, J., 2022: Genome-wide study of Hsp90 gene family in cabbage (Brassica oleracea var. capitata L.) and their imperative roles in response to cold stress. Frontiers in Plant Science 13, 908511. https://doi.org/10.3389/fpls.2022.908511
Salopek-Sondi, B., Tkalec, M., Bauer, N., Jasprica, N., Goreta Ban, S., 2025: Brassicaceae: stress responses and breeding strategies in unfriendly environments. In: Chen, J-T. (ed.) Plant sress tolerance, Molecular mechanisms and breeding strategies, 358-390. CRC Press. https://doi.org/10.1201/9781003457237-18
Schneider, C.A., Rasband, W.S., Eliceiri, K.W., 2012: NIH Image to ImageJ: 25 years of image analysis HHS public access. Nature Methods 9, 671–675. https://doi.org/10.1038/nmeth.2089
Seneviratne, S.I., Zhang, X., Adnan, M., Badi, W., Dereczynski, C., Di Luca, A., Ghosh, S., Iskandar, I., Kossin, J., Lewis, S., Otto, F., Pinto, I., Satoh, M., Vicente-Serrano, S.M., Wehner, M., Zhou, B., 2021: Weather and climate extreme events in a changing climate. doi: 10.1017/9781009157896.013. In: Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S.L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M.I., Huang, M., Leitzell, K., Lonnoy, E., Matthews, J.B.R., Maycock, T.K., Waterfield, T., Yelekçi, O., Yu, R., Zhou B. (eds.), Climate change 2021: The physical science basis. Contribution of working group i to the sixth assessment report of the intergovernmental panel on climate change. Cambridge University Press, 1513–1766. Cambridge, United Kingdom and New York.
Sunkar, R., Bartels, D., Kirch, H.H., 2003: Overexpression of a stress-inducible aldehyde dehydrogenase gene from Arabidopsis thaliana in transgenic plants improves stress tolerance. Plant Journal 35, 452–464. https://doi.org/10.1046/j.1365-313X.2003.01819.x
Staples, R.C., Stahmann, M.A., 1964: Changes in proteins and several enzymes in susceptible bean leaves after infection by the bean rust fungus. Phytopathology 54, 760–764.
Szabados, L., Savouré, A., 2010: Proline: a multifunctional amino acid. Trends in Plant Science 15, 89–97. https://doi.org/10.1016/j.tplants.2009.11.009
Taylor, S.C., Posch, A., 2014: The design of a quantitative western blot experiment. BioMed Research International 2014, 361590–361598. https://doi.org/10.1155/2014/361590
Tiwari, M., Kumar, R., Min, D., Jagadish, S. V. K., 2022,: Genetic and molecular mechanisms underlying root architecture and function under heat stress—A hidden story. Plant, Cell & Environment 45, 771–788. https://doi.org/10.1111/pce.14266
Tokić, M., Leljak Levanić, D., Ludwig-Müller, J., Bauer, N., 2023: Growth and molecular responses of tomato to prolonged and short-term heat exposure. International Journal of Molecular Sciences 24, 4456. https://doi.org/10.3390/ijms24054456
Vandesompele, J., De Preter, K., Pattyn, F., Poppe, B., Van Roy, N., De Paepe, A., Speleman, F., 2002: Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biology 3, 00341–003412. https://doi.org/10.1186/gb-2002-3-7-research0034
Villas-Bôas, S.G., Delicado, D.G., Åkesson, M., Nielsen, J., 2003: Simultaneous analysis of amino and nonamino organic acids as methyl chloroformate derivatives using gas chromatography-mass spectrometry. Analytical Biochemistry 322, 134–138. https://doi.org/10.1016/j.ab.2003.07.018
Wahid, A., Gelani, S., Ashraf, M., Foolad, M.R., 2007: Heat tolerance in plants: An overview. Environmental and Experimental Botany 61, 199–223. https://doi.org/10.1016/j.envexpbot.2007.05.011
Wang, L., Liu, F., Ju, L., Xue, .B, Wang, Y., Wang, D., Hou, D., 2022: Genome structures and evolution analysis of HSP90 gene family in Brassica napus reveal the possible roles of members in response to salt stress and the infection of Sclerotinia sclerotiorum. Frontiers in Plant Science 13, 854034. https://doi.org/10.3389/fpls.2022.854034
Wilson, R.E., Jensen, E.H., Fernandez, G.C.J., 1992: Seed germination response for eleven forage cultivars of Brassica to temperature. Agronomy Journal 84, 200–202. https://doi.org/10.2134/agronj1992.00021962008400020015x
Yamauchi, Y., Ogawa, M., Kuwahara, A., Hanada, A., Kamiya, Y., Yamaguchi, S., 2004: Activation of gibberellin biosynthesis and response pathways by low temperature during imbibition of Arabidopsis thaliana seeds. Plant Cell 16, 367–378. https://doi.org/10.1105/tpc.018143
Yeh, C.H., Kaplinsky, J.N., Hu, C., Charng, Y., 2012: Some like it hot, some like it warm: Phenotyping to explore thermotolerance diversity. Plant Science 195, 10–23. https://doi.org/10.1016/j.plantsci.2012.06.004
Yadukrishnan, P., Datta, S., 2021: Light and abscisic acid interplay in early seedling development. New Phytology 229, 763-769. https://doi.org/10.1111/nph.16963
Yadukrishnan, P., Rahul, P.V., Datta, S., 2020: HY5 suppresses, rather than promotes, abscisic acid-mediated inhibition of postgermination seedling development. Plant Physiology 184(2), 574-578. https://doi.org/10.1104/pp.20.00783
Zhao, J., Lu, Z., Wang, L., Jin, B., 2021: Plant responses to heat stress: Physiology, transcription, noncoding RNAs, and epigenetics. International Journal of Molecular Sciences 22, 1–14. https://doi.org/10.3390/ijms22010117
Zheng, Y., Yang, Z., Xu, C., Wang, L., Huang, H., Yang, S., 2020: The interactive effects of daytime high temperature and humidity on growth and endogenous hormone concentration of tomato seedlings. HortScience 55, 1575–1583. https://doi.org/10.21273/HORTSCI15145-20